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Introduction



Presentation of linear factor models

� We consider the linear factor model where X is an observable random

vector in Rd which takes the following decomposition

X = AZ + E

where A ∈ Rd×K is a loading matrix that parametrizes the

factorization of X through Z ∈ RK , an unobservable

latent random vector , and E is a random vector serving as noise.
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Linear factor models has a long story outside EVT

Linear Factor Model

X = AZ+E

� Becoming popular as dimension reduction tools .

� O�ering an e�cient means of modeling dependencies in

high dimensions , contigent a limited number of latent factors.

� Joint normality of the common factors is typically assumed and

maximum likelihood estimation is employed.
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Linear factor models inside EVT

Linear Factor Model

X = AZ+E

� An observable random vector X ∈ Rd ;

� a latent random vector Z ∈ RK which is regularly varying with tail

index α = 1 and having the subsequent exponent measure

ΛZ =

K∑
k=1

δ0 ⊗ · · · ⊗ ΛZ(k) ⊗ · · · ⊗ δ0, ΛZ(k)(dy) = y−2dy.

� a light-tailed noise E ∈ Rd, independent of factors.

� This model is also very interpretable :

X(1) = 0.5
half of extremes

are due to Z(1)

Z(1) + 0.5
half of extremes

are due to Z(2)

Z(2)
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X is also regularly varying

Linear Factor Model

X = AZ+E

� Let || · || be a norm, E = [0,∞)d \ {0}, Sd = {x ∈ Rd, ||x|| = 1} and

Θ = Sd ∩ E.

� The following weak convergence holds true on Θ

lim
x→∞

P
{

X

∥X∥ ∈ · | ∥X∥ > x

}
= Φ(·),

� Φ has the discrete representation

Φ(·) = w−1
K∑

k=1

∥A·k∥δ A·k
∥A·k∥

(·), w =

K∑
k=1

∥A·k∥,

� The linear factor model is a linear adaptation of the max-linear

models, sharing the same angular measure Φ.

Max Linear Factor Model

X =
(∨K

a=1 A1aZ
(a), . . . ,

∨K
a=1 AdaZ

(a)
)
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Main contributions



Outline of the litterature

� Since there is no Lebesgue density for the angular measure ,

estimating A in linear factor models is di�cult.

� [Einmahl et al., 2012] and [Einmahl et al., 2018] opt for a

least squares estimator based on the stable tail dependence function .

� [Janÿen and Wan, 2020, Avella-Medina et al., 2021] propose

spectral clustering designed for extremes employing its output to

estimate A·1/||A·1||, . . . , A·K/||A·K || .

� [Avella-Medina et al., 2021, Avella-Medina et al., 2022], introduce a

procedure coupled with screeplot to aid in the selection of K .

� Methods for estimating A in higher dimensions have emerged under

the condition of a squared matrix A ∈ Rd×d (see, e.g.,

[Klüppelberg and Krali, 2021, Kiriliouk and Zhou, 2022]).
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Some (theoretical) limits

� No results have been obtained outside the

independent and identically distributed (i.i.d.) assumption.

� Theoretical results are derived within the framework of a �xed d and

as n approaches in�nity .
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Our contribution

Linear Factor Model

X = AZ+E

� We propose a model-based clustering via A.

� We consider two components X(i) and X(j) as akin if they share a

non-zero association .

� Variables exhibiting this similarity are grouped together within the

cluster denoted as Ga :

Ga = {j ∈ {1, . . . , d} : Aja ̸= 0}, for each a ∈ {1, . . . ,K}.

� The de�nition of A within linear factor models, lacks uniqueness

without imposing additional constraints :

� Condition (i)
∑K

a=1 Aja = 1 ;

� Condition (ii) For every a ∈ {1, . . . ,K}, there exist at least one indice

j ∈ {1, . . . , d} such that Aja = 1 and Ajb = 0, ∀b ̸= a.
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Identi�ability theorem



Factor with second moments

Linear Factor Model

X = AZ+E

� In this frame we suppose that Z ∼ NK(0, IK) .

� Using independence between factors, we have Cov(Z) = IK , the

identity matrix.

� It is possible to show that under Condition (i) and Condition (ii)

that the matrix A can be recovered solely using Cov(X) = AA⊤ .

� In our framework, the covariance matrix of Z does not exists .

� Can we �nd a similar , but di�erent bivariate measures having

desirable properties ?
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Extremal Correlation matrix of the linear factor model

Linear Factor Model

X = AZ+E

Theorem

Let X be a LFM and A satis�es Condition (i). Then X is regularly

varying and its extremal correlation matrix X can be written as

X = A⊙A⊤,

with

χ(i, j) =
K∑

k=1

Aik ∧Ajk.

10



Some properties about pure variables

� For any given matrix A, the pure variable set is outlined as follows

I = ∪K
a=1Ia, Ia := {i ∈ [d] : Aia = 1, Aib = 0, ∀b ̸= a}.

� By Condition (ii), ∀a ∈ [K], ∃ia ∈ {1, . . . , d} such that X(ia) = Z(a) .

� Per construction, the vector (X(i1), . . . , X(iK)) is the

largest asymptotically independent vector .

� If i, j ∈ Ia , then χ(i, j) = 1 .

11



Pure variables are identi�able

Linear Factor Model

X = AZ+E

Theorem

Let X be a LFM and Conditions (i)-(ii) hold. Then :

1. The set [K] is a maximal clique of the undirected graph

G = (V,E) where V = [d] and (i, j) ∈ E if χ(i, j) = 0.

2. The pure variable set I can be determined uniquely from X .

Moreover its partition I = {Ia}1≤a≤K is unique and can be

determined from X up to label permutations.

12



Non-pure coe�cients are identi�able

By designing J := [d] \ I, the set of impure variables , we show that AJ is

identi�able.

� For each i ∈ Ik for some k ∈ [K] and any j ∈ J , the model imposes :

χ(i, j) =

K∑
a=1

Aia ∧Aja = Ajk

� After averaging over all i ∈ Ik ,

Ajk =
1

|Ik|
∑
i∈Ik

χ(i, j).

� Repeating this for every k ∈ [K] , we obtain the formula

Aj· =

 1

|I1|
∑
i∈I1

χ(i, j), . . . ,
1

|IK |
∑
i∈IK

χ(i, j)

 .
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The matrix is identi�able

Linear Factor Model

X = AZ+E

Theorem

Assume that X is a LFM and Conditions (i)-(ii) hold. Then, there

exist a unique matrix A, up to a permutation, such that X = AZ+E.

This implies that the associated soft clusters Ga, for 1 ≤ a ≤ K, are

identi�able, up to label switching.
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Estimation



Observations

Data generative process

Let (Xt, t ∈ Z) be a multivariate strictly stationary random process

and (Xt, t = 1, . . . , n) an excerpt. Consider m ∈ {1, . . . , n} and Cm be

the copula of the m-componentwise maxima of (Xt, t ∈ Z). We suppose

that there exist a copula C∞ such that

lim
m→∞

Cm(u) = C∞(u),u ∈ [0, 1]d,

where

C∞(u) = exp
{
−L

(
− ln(u(1)), . . . ,− ln(u(d))

)}
,

and the stable tail dependence function L : [0,∞)d → [0,∞) is described

by

L(z(1), . . . , z(d)) =

K∑
a=1

∨d
j=1Ajaz

(j).

15



The estimation procedure

1. Estimate the number of clusters K, the pure variable set I and its

partition I ;

2. Estimate AI , the submatrix of A with rows Ai· that correspond to
i ∈ I ;

3. Estimate AJ , the submatrix of A with rows Aj· that correspond to
j ∈ J ;

4. Estimate the overlapping clusters Ĝ = {Ĝ1, . . . , ĜK̂}.
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16



The estimation procedure

1. Estimate the number of clusters K, the pure variable set I and its

partition I ;

2. Estimate AI , the submatrix of A with rows Ai· that correspond to
i ∈ I ;

3. Estimate AJ , the submatrix of A with rows Aj· that correspond to
j ∈ J ;

4. Estimate the overlapping clusters Ĝ = {Ĝ1, . . . , ĜK̂}.
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� χ̄(j) =

(
1

|Î1|
∑

i∈Î1
χ̂n,m(i, j), . . . , 1

|Î
K̂

|
∑

i∈ÎK
χ̂n,m(i, j)

)
.

� β̄
(j)
a = χ̄

(j)
a 1

{χ̄(j)
a >δ}

, a ∈ [K̂]

� By denoting Ŝ = supp(β̄(j)), we obtain

β̂(j)
∣∣∣
Ŝ
= P∆

K̂−1

(
β̄(j)

∣∣
Ŝ
)
, β̂(j)

∣∣∣
Ŝc

= 0.
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3. Estimate AJ , the submatrix of A with rows Aj· that correspond to
j ∈ J ;

4. Estimate the overlapping clusters Ĝ = {Ĝ1, . . . , ĜK̂}.
� Ĝ = {Ĝ1, . . . , ĜK̂}, Ĝa = {j ∈ [d] : Âja ̸= 0}, for each a ∈ [K̂].
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The procedure in memes

Step 1

Find a maximal clique
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The procedure in memes

Step 2

Estimate AI
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The procedure in memes

Step 3

Estimate AJ :

χ̄(j) =
(

1

|Îa|

∑
i∈Îa

χ̂n,m(i, j)
)
a∈[K̂]
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The procedure in memes

Step 3

Estimate the support : β̄
(j)
a = χ̄

(j)
a 1{χ̄(j)

a >δ}
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The procedure in memes

Step 3

Projection into the sparse simplex :

β̂(j)
∣∣∣
Ŝ
= P∆

K̂−1

(
β̄(j)

∣∣∣
Ŝ

)
, β̂(j)

∣∣∣
Ŝc

= 0
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The procedure in memes

Step 4

Estimate overlapping clusters :

Ĝa = {j ∈ [d] : Âja ̸= 0}, a ∈ [K̂]
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Statistical guarantees



A concentration inequality

1. Let χ̂n,m(i, j) the madogram-based estimator of the extremal

correlation, n is the sample size and m the block's length, i, j ∈ [d].

2. Let

dm = sup
1≤i<j≤d

|χm(i, j)− χ(i, j)|,

where χm(i, j) is the pre-asymptotic extremal correlation.

3. De�ne

E = E(δ) :=
{

sup
1≤i<j≤d

|χ̂n,m(i, j)− χ(i, j)| ≤ δ

}
.

4. If (Xt, t ∈ Z) has exponential decaying strong mixing coe�cients ,

then there exists c0 > 0, c1 > 0 such that

P(E) ≥ 1− d−c0 ,

where

δ = dm + c1

(√
ln (kd)

k
+

ln(k) ln ln(k) ln(kd)

k

)
,

and k = ⌊n/m⌋ ≥ 4, the number of blocks.
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The procedure is consistent with high probability

Theorem

Set s = max
j∈[d]

||Aj·||0. Let (Xt, t ∈ Z) veri�es the data generative process

and some strong signal conditions. Then for the estimator Â the follo-

wing holds.

1. Recovery of latent factors :

K̂ = K,

with probability larger than 1− d−c0 for a positive constant c0.

19



The procedure is consistent with high probability

Theorem

Set s = max
j∈[d]

||Aj·||0. Let (Xt, t ∈ Z) veri�es the data generative process

and some strong signal conditions. Then for the estimator Â the follo-

wing holds.

2. An upper bound :

L2(Â, A) ≤ 4
√
sδ,

where L2(A,A′) := min
P∈SK

||AP −A′||∞,2, and

||A||∞,2 := max
1≤j≤d

||Aj·||2,

with probability larger than 1− d−c0 for a positive constant c0.
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||Aj·||0. Let (Xt, t ∈ Z) veri�es the data generative process

and some strong signal conditions. Then for the estimator Â the follo-

wing holds.

3. A guarantee for support recovery :

supp(AJ1) ⊆ supp(Â) ⊆ supp(A),

where J1 = {j ∈ J : for any a ∈ [K] with Aja ̸= 0, Aja > 2δ},

with probability larger than 1− d−c0 for a positive constant c0.
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The procedure is consistent with high probability

Theorem

Set s = max
j∈[d]

||Aj·||0. Let (Xt, t ∈ Z) veri�es the data generative process

and some strong signal conditions. Then for the estimator Â the follo-

wing holds.

4. Cluster recovery :

TFPP (Ĝ) =
∑

j∈[d],a∈[K] 1{Aja=0,Âja>0}∑
j∈[d],a∈[K] 1{Aja=0}

= 0,

TFNP (Ĝ) =
∑

j∈[d],a∈[K] 1{Aja>0,Âja=0}∑
j∈[d],a∈[K] 1{Aja>0}

≤
∑

j∈J\J1
t(j)

|I|+
∑

j∈J s(j)
,

where s(j) =
∑K

a=1 1{Aja>0} and t(j) =
∑K

a=1 1{Aja≤2δ},

with probability larger than 1− d−c0 for a positive constant c0.
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Application(s)



Extreme precipitations in France

� We focus on weekly maxima of hourly precipitation recorded at 92

weather stations in France during the fall season

(September-November, 1993-2011).

� We thus have 228 block maxima.

� This dataset was provided by Météo-France and has been previously

used in [Bernard et al., 2013].

� Using a data-driven selection method to choose δ, we unveil

four latent factors .
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Spatial representation
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Figure 1 � Each location's strength of association with the respective latent

variable is conveyed through the size and color intensity of the square.
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Wild�res in French Mediterranean

� Our case study focuses on the southeastern part of France, covering an

area of 80500 km2.

� Gridded weather reanalysis data from the SAFRAN model of

Météo-France, with an 8km resolution, is utilized for analysis.

� Various meteorological indices on �re activity patterns have been

developed, including the widely used unitless

Fire Weather Index (FWI) .

� In our methodology, we extract monthly maxima over the 1143 pixels,

resulting in 100 observations.

� Using a data-driven approach to select the threshold δ, we obtain

K̂ = 2 and Â.
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22



Spatial variability of FWI
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Figure 2 � In panel a, we depict the spatial representation of cluster associated to

the �rst latent variable. Panel b exhibits spatial association with the second latent

variable. Each location's strengh of association with the respective latent variable

is conveyed through the proportionate size and color intensity of the square.
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Conclusions



Extensions

� Minimax risk ? Very recently, [Zhang et al., 2023] were able to obtain a

minimax risk for LFM with K ≥ d.

� Despite making signi�cant progress in understanding potential proofs

by studying their methodologies, I am still encountering challenges in

deriving the desired result.
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