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Introduction

Networks can be observed directly or indirectly from a variety of sources:
▶ social websites (Facebook, Twitter, ...),
▶ emails (from your Gmail, Clinton’s mails, Enron Email data ...),
▶ digital/numeric documents (Panama papers, co-authorships, ...),
▶ and even archived documents in libraries (digital humanities).

⇒ most of these sources involve text!
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Observed network: difficult to apprehend
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STBM/ETSBM results: difficult to represent
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Our goal with Deep-LPTM
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Notations

▶ i and j will refer to nodes.
▶ q and r will refer to clusters.
▶ k will refer to topics.
▶ βk ∈ ∆V : a topic over the V words.
▶ Q: the number of clusters.
▶ K: the number of topics.
▶ N : the number of nodes.
▶ M : the number of edges.
▶ softmax(x) = (

∑K
k=1 e

xk)−1(ex1 , . . . , exK ),
∀x ∈ RK .
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Observed variables

▶ A ∈ MN×N ({0, 1}): the binary adjacency matrix,
Aij = 1 if i is connected to j.

▶ W = (Wij)ij : the documents,
Wij the document sent from i to j.
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Observed variables: example of a document-term matrix

Document-term matrix

Documents
Vocabulary Temperatures are rising I love cinema

Temperatures are rising 1 1 1 0 0 0

I love cinema 0 0 0 1 1 1

Table: Example of a document term matrix W ∈ M2×6(N), using a bag-of-words representation,
corresponding to the three documents on the left-hand side.
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Node generation

Based on the latent position cluster model1, Ci the cluster membership of node i for all
i ∈ {1, . . . ,M}

Ci
i.i.d∼ MQ(1, π). (1)

where Q corresponds to the number of clusters.
The latent vector representing node i, denoted Zi, is assumed to be Gaussian:

Zi | {Ciq = 1} ∼ Np

(
µq, σ

2
qIp
)
. (2)

Denoting ηij := κ− ∥Zi − Zj∥, the probability for node i to be connected to node j is

P (Aij = 1 | Zi, Zj , κ) =
1

1 + e−ηij
. (3)

1Handcock et al. (2007).
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Text generation in Deep-LPTM2

1. Yij | {AijCiqCjr = 1} ∼ NK(mqr, s
2
qrIK),

2. θij = softmax(Yij), proportions of topic in documents sent from i to j

3. Wij | {Aij = 1, θij} ∼ MV

(
Mij , θij

⊤β
)
, where β = (β1 · · ·βK)⊤ ∈ MK×V (R) is the

vocabulary matrix and

θij
⊤β =

K∑
k=1

θijkβk,· ∈ RV .

2based on Dieng et al. (2020).



11

Text generation in Deep-LPTM2

1. Yij | {AijCiqCjr = 1} ∼ NK(mqr, s
2
qrIK),

2. θij = softmax(Yij), proportions of topic in documents sent from i to j

3. Wij | {Aij = 1, θij} ∼ MV

(
Mij , θij

⊤β
)
, where β = (β1 · · ·βK)⊤ ∈ MK×V (R) is the

vocabulary matrix and

θij
⊤β =

K∑
k=1

θijkβk,· ∈ RV .

2based on Dieng et al. (2020).



12

Text generation in Deep-LPTM3

Each topic k, represented by βk ∈ ∆V , is obtained by computing:

βk = softmax
(
ρ⊤αk

)
,

▶ ρ ∈ ML×V (R) L-dimensional word embeddings
▶ α = (α1 · · ·αK) ∈ ML×K(R) L-dimensional topic embeddings

3based on Dieng et al. (2020).
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To summarise: Deep-LPTM graphical representation

WijAij

Zi Zj Yij

CjCi

(i, j)

Figure: Deep-LPTM graphical
representation.

=⇒
Node cluster memberships bridge the gap
between textual data and node representa-
tion.



▶ Ci node cluster membership
▶ Zi node latent representation
▶ Yij text latent representation

14

Inference

Marginal likelihood
Denoting Θ the set of all model parameters,

log p(A,W | Θ) = log

(∑
C

∫
Z

∫
Y

p(A,W,C,Z,Y | Θ)dZdY

)
. (4)

This quantity is not tractable since the sum over all configurations requires to compute QN

terms. Besides, it involves integrals that cannot be computed analytically.

−→ Variational inference for approximation purposes.
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Inference

The variational inference consists in splitting the likelihood in two terms. For any distribution
R(C,Z,Y),

log p(A,W | Θ) = L (R(·); Θ) + KL(R(·)||p(C,Z,Y | A,W)), (5)

where
L (R(·); Θ) = ER

ï
log

p(A,W,C,Z,Y | Θ)

R(C,Z,Y)

ò
. (6)
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Inference

Assumptions regarding the variational distributions:

R(C,Z,Y | A,W) = R(C)R(Z | A)R(Y | A,W),

R(C) =

N∏
i=1

Rτi(Ci) =

N∏
i=1

MQ(Ci; 1, τi),

R(Z | A) =
N∏
i=1

RϕZ
(Zi | A) =

N∏
i=1

Np(Zi;µϕZ
(A)i, σ

2
ϕZ

(A)iIp),

R(Y | A,W) =
∏
i̸=j

RϕY
(Yij | Wij)

Aij =
∏
i̸=j

NK

(
Yij ;µϕY

(Wij),diag
(
σ2
ϕY

(Wij)
))Aij

,

where
Ä
µϕZ

, σ2
ϕZ

ä
are the outputs of the encoder of a variational graph auto encoder4 andÄ

µϕY
, σ2

ϕY

ä
the outputs of ETM encoder.

4Kipf, Welling (2016).
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Details about VGAE5

Denoting Ã = D−1/2(A+ IN )D−1/2, the graph convolutional network can be summarised as

µϕ(A) = ÃReLU(ÃΩ0)Ωµ,

log σ2
ϕ(A) = ÃReLU(ÃΩ0)Ωσ,

where
▶ ReLU(x) = (max(0, x1), . . . ,max(0, xF )) if x ∈ RF ,
▶ Ω0 ∈ MN×D(R) with D = 64 in all the experiments we carried out,
▶ Ωµ,Ωσ ∈ MD×(Q−1)(R).

5Kipf, Welling (2016).
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Neural network encoding the documents

Figure: Representation of the neural network mapping the documents to the variational parameters.
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ELBO derivation

Thanks to the previous assumptions, the ELBO is given by:

L (R(·);α,ρ) =ER [log p(W | C,A,Y,α,ρ)]

+ ER [log p(Y)]− ER [logR(Y)]

+ ER [log p(A | Z, κ)]
+ ER [log p(Z)]− ER [logR(Z)]

+ ER [log p(C | π)]− ER [logR(C)] .
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Optimisation: Node updates

Proposition
The parameters of the node embedding distributions maximising the ELBO are given by:

µq =
1

Nq

N∑
i=1

τiqµϕZ
(A)i, (7)

σ2
q =

1

pNq

N∑
i=1

τiq
(
∥µϕZ

(A)i − µq∥22 + pσ2
ϕZ

(A)i
)
, (8)

where Nq =
∑N

i=1 τiq is the posterior mean of the number of nodes in cluster q.
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Optimisation: edge embedding parameters

Proposition
The parameters of the edge embedding distributions maximising the ELBO are given by:

mqr =
1

Nqr

N∑
i,j=1

AijτiqτjrµϕY
(Wij), (9)

s2qr =
1

KNqr

N∑
i,j=1

Aijτiqτjr

[
∥µϕY

(Wij)−mqr∥22 +
K∑

k=1

σ2
ϕY

(Wij)k

]
, (10)

where Nqr =
∑N

i,j=1 Aijτiqτjr denotes the expected number of documents sent from cluster q
to cluster r under the approximated posterior distribution.
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Optimisation: the clusters encapsulate both information

Proposition
The variational node cluster membership probability τiq maximising the ELBO is given by:

τiq ∝ γq exp
{
−KLZi

q −
∑
j ̸=i

Q∑
r=1

Ä
Aijτjr KLYij

qr +Ajiτjr KLYji
rq

ä}
,

where

KLZi
q = KL

(variational distribution of node embedding︷ ︸︸ ︷
Np(µϕZ

(A)i, σ
2
ϕZ

(A)iIp) ||

distribution of cluster q
embedding︷ ︸︸ ︷

Np

(
µq, σ

2
qIp
) )

,

KLYij
qr = KL

(
NK

(
µϕY

(Wij),diag
(
σ2
ϕY

(Wij)
))︸ ︷︷ ︸

variational distribution of edge embedding

|| NK(mqr, s
2
qrIK)︸ ︷︷ ︸

distribution of document
embedding sent from cluster q to r

)
.
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Optimisation of the encoders

The parameters of the graph convolutional network encoder as well as the parameters of the
encoder of the neural topic model are optimised using a MC estimate of the gradient obtained
... it cannot be done directly !
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The reparametrisation trick6

How to compute the gradient ∂
∂ϕY

L (R(·);α,ρ) ?

∂

∂ϕY
L (R(·);α,ρ) =

∂

∂ϕY
ER [log p(W | C,A,Y,α,ρ)]− ∂

∂ϕY

analytical form︷ ︸︸ ︷
KL(R(Y) | p(Y)) .

Since R(·) depends on ϕY , we cannot interchange the derivative and the integral in the term
on the left-hand side.
The reparametrisation trick removes this dependency by sampling ϵ ∼ NK(0, IK) and taking
Yij = µϕY

ij (A) + σϕY

ij (A)ϵ, such that the following holds:

∂

∂ϕY
ER [log p(W | C,A,Y,α,ρ)] =

∂

∂ϕY
Eϵ

[
EC [log p(W | C,A,Y,α,ρ)]

]
= Eϵ

[ ∂

∂ϕY
EC [log p(W | C,A,Y,α,ρ)]

]
.

A Monte-Carlo estimate of this last expression can now be computed.
6Kingma, Welling (2014); Rezende et al. (2014).
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Model selection

Our criterion:

log p(A,W,C,Z,Y | M, Q,K, P ) = log

∫
θ

p(A,W,C,Z,Y | θ,M, Q,K, P )p(θ)dθ.

−→ this quantity is intractable. Therefore, we estimate it using a BIC-like approximation.

Proposed estimate:

IC2L(M, Q,K, P, Ĉ, Ẑ, Ŷ) = max
θ

log p(A,W, Ĉ, Ẑ, Ŷ | θ,M, Q,K, P )− Ω(M, Q,K, P ),

with Ĉ Ẑ and Ŷ the maximum-a-posteriori estimates, and Ω(M, Q,K, P ) the penalty from
BIC-like approximations.
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Synthetic datasets

Scenario A Scenario B Scenario C

Figure: Networks sampled from each scenario. The node colours denote the node cluster memberships
and the edge colours denote the majority topic in the corresponding documents.
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Simulations - Scenario A, B and C

Table: Presentation of our three scenarii to evaluate our model.

Scenario A Scenario B Scenario C
Q (clusters) 3 2 4
K (topics) 4 3 3

Communities 3 1 3

πqr (community probability)
η = 0.25, ϵ = 0.01

Ñ
η ϵ ϵ
ϵ η ϵ
ϵ ϵ η

é Å
η η
η η

ã Ü
η ϵ ϵ ϵ
ϵ η ϵ ϵ
ϵ ϵ η η
ϵ ϵ η η

ê
Topic between q and r

Ñ
t1 t4 t4
t4 t2 t4
t4 t4 t3

é Å
t1 t3
t3 t2

ã Ü
t1 t3 t3 t3
t3 t2 t3 t3
t3 t3 t1 t3
t3 t3 t3 t2

ê
Sufficient information to find the

clusters
Network Topic Network & Topics
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Noise in the Hard Scenario

▶ node i (j resp.) in cluster q (r resp.)
▶ topic proportion θ⋆ij = (0, . . . , 0, 1, 0 . . . , 0) with 1 on the corresponding topic
▶ ζ = 0: pure topic, ζ = 1: uniform distribution over topics
▶ η = 0.1 instead of 0.25

θij = (1− ζ)θ⋆ij + ζ ∗
Å
1

K
, . . . ,

1

K

ã⊤
. (11)
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Simulations - Detailed example with three communities
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Figure: Evolution of the ARIs and the ELBO during the iterations of the optimisation procedure.
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Simulations - Detailed example with three communities

Cluster 1
Cluster 2
Cluster 3

Topic 1
Topic 2
Topic 3
Topic 4

Figure: The meta-network
obtained with Deep-LPTM on
a scenario A.

Topic 1 Topic 2 Topic 3 Topic 4

1 cancer black princess seats
2 cell hole birth david
3 occur gravity charlotte political
4 genes light cambridge lost
5 cancers shadow queen kingdom
6 due credit granddaughter black
7 mutations event duchess party
8 radiation disc palace part
9 princess princess london resentment

10 include horizon great united

Table: Topics of the model in Scenario A Easy, represented by the
10 most probable words per topic.
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Simulations - Detailed example with three communities

Iteration 1 Iteration 333 Iteration 666 Iteration 1000

Figure: Evolution of the node embeddings during training.
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IC2L model selection results for different triplets (K,P,Q)

K = 2 K = 3 K = 4 K = 5 K = 6

Q = 2 0 0 0 0 0
Q = 3 0 0 0 0 0
Q = 4 0 10 0 0 0
Q = 5 0 0 0 0 0
Q = 6 0 0 0 0 0

Table: Number of times a triplet (K,P,Q) is associated with the highest IC2L over 10 graphs
simulated according to Scenario C (Q⋆ = 4 and K⋆ = 3). All the models with the highest IC2L value
correspond to P = 2. Therefore, only the table corresponding to this value is shown.



33

Benchmark

Scenario A Scenario B Scenario C

Easy

ETSBM 0.99± 0.03 1.00± 0.00 0.96± 0.04
ETSBM - PT 1.00± 0.00 1.00± 0.00 0.96± 0.05
Deep-LPTM 1.00± 0.00 1.00± 0.00 1.00± 0.00
Deep-LPTM - PT 1.00± 0.00 1.00± 0.00 1.00± 0.00

Hard

ETSBM 0.96± 0.10 0.90± 0.30 0.72± 0.25
ETSBM - PT 0.99± 0.01 1.00± 0.00 0.74± 0.21
Deep-LPTM 0.99± 0.02 1.00± 0.00 0.89± 0.15
Deep-LPTM - PT 1.00± 0.01 1.00± 0.00 0.85± 0.18

Table: ARI of the node clustering over 10 graphs in three scenarios for the two levels of difficulty Easy
and Hard. Deep-LPTM, as well as ETSBM, are presented with and without pre-trained embeddings
(denoted PT)
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Real world use-case: ENRON email dataset

Context: ENRON was an American gas selling company in North America. In December
2001, the company filed for the largest bankruptcy at that time. The emails of the company
were made public by the federal energy regulatory commission (FERC).

Preprocessing of the dataset:
▶ We kept the emails sent between September and December 2001.
▶ Concatenation of emails sent from one account to the other.
▶ Number of employees (= nodes): 149.
▶ Number of documents (= edges): 1, 200 documents from 21, 000 emails.
▶ IC2L was computed for Q ∈ {5, 7, 10}, K ∈ {3, 5, 7, 10}, P ∈ {2, 4, 8, 16}. The highest

value was obtained for:
Q̂IC2L, K̂IC2L, P̂IC2L = (7, 10, 2)
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Real world example: ENRON email dataset

Cluster 1
Cluster 2
Cluster 3
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Figure: Deep-LPTM representation of Enron email network. The node cluster memberships are
denoted by the colour of the nodes and the majority topic in the documents are denoted by the colour
of the edges.
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Real world example: ENRON email topics obtained with Deep-LPTM
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Figure: The 10 most probable words of each topic according to Deep-LPTM.
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Real world example: ETSBM
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Figure: ETSBM representation of Enron email network. The node cluster memberships are denoted by
the colour of the nodes and the majority topic in the documents are denoted by the colour of the edges.



38

Real world example: ENRON email topics obtained with ETSBM
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Figure: The 10 most probable words of each topic according to ETSBM.
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Conclusion & further work

▶ The representation for communities works fine
▶ The clustering is efficient in the three studied settings
▶ Our model captures meaningful clusters both in terms of connections and topics
▶ Combining the block modelling approach with the representation power
▶ Improve the graph neural network with latest advancement
▶ Incorporate temporal information
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Model selection criterion for Deep-LPTM

’IC2L(M, Q,K, P ) =max
κ

log p(A | Ẑ, κ,M)− 1

2
log(N(N − 1))

+ max
µ,σ

log p(Ẑ | Ĉ,µ,σ,M, Q, P )− QP +Q

2
log(N)

+ max
ρ,α

log p(W | A, Ŷ,ρ,α,M)− V L+KL

2
log(M)

+ max
m,s

log p(Ŷ | A, Ĉ,m, s,M,K)− Q2K +Q2

2
log(M)

+ max
γ

log p(Ĉ | γ,M, Q)− Q− 1

2
log(N),

with Ẑ, Ŷ and, Ĉ the maximum-a-posteriori estimates, and

Ω(M, Q,K, P ) =
1

2
log(N(N − 1))

+
Q(P + 2)− 1

2
log(N) +

L(V +K) +Q2(K + 1)

2
log(M).
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Real world example: cluster connectivity estimated with ETSBM

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0.1

0.2

0.3

0.4

Figure: Connectivity matrix between clusters estimated by ETSBM.
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