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Introduction

In many applications, statistical learning has to face new needs:
® High-dimensional data,
® Extracting insights from complex datasets,

® Existence of time-dependent patterns.

The challenges of high-dimensional data:
= Curse of dimensionality,
= Computational challenges,
® Sparsity.
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Pharmacovigilance data

The problem in the pharmacovigilance context:
B The method currently used is incomplete,
® The signal detection process is not automated,

m Each Regional Center of Pharmacovigilance (RCPV) has to process a massive amount of data.
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Pharmacovigilance data

The problem in the pharmacovigilance context:
B The method currently used is incomplete,
® The signal detection process is not automated,
m Each Regional Center of Pharmacovigilance (RCPV) has to process a massive amount of data.

The missions of the RCPV of Nice:
® Detecting safety signals about drugs,
= Answering to questions of health professionals and patients
about drugs,
= Promoting the proper use of the medical products.

Our goals:
= Provide useful summaries for medical authorities,

® |dentifying possible unexpected phenomena.




The role of unsupervised learning

Various methods to address challenges of massive and high-dimensional data:
® Dimension reduction: data are represented within lower-dimensional subspaces,
® Clustering: grouping similar rows of a data matrix,

® Co-clustering: simultaneously clustering rows and columns of a matrix.



The role of unsupervised learning

Various methods to address challenges of massive and high-dimensional data:

® Dimension reduction: data are represented within lower-dimensional subspaces,

® Clustering: grouping similar rows of a data matrix,

m Co-clustering: simultaneously clustering rows and columns of a matrix.
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The pharmacovigilance data structure

Adversarial Effects

Time Periods

Figure: Evolution of spontaneous reports to RCPV from 2010 to 2020, a small sample is considered.
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Time-dependent discrete data

London bikes - June 2022

Goals:

® |nterpret massive streams of interaction
data,

= Summarize dynamic datasets, s
® Detect changes in cluster memberships, :
® Sparsity modeling. | II II
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Time-dependent discrete data

Goals:

® |nterpret massive streams of interaction
data,

= Summarize dynamic datasets,
® Detect changes in cluster memberships,

= Sparsity modeling.

Contributions:
® Dynamic co-clustering,
® Sparse dynamic co-clustering,
® Online sparse co-clustering.
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Figure: Histogram of London bikes data along a
cumulative day.
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The goal

Time instant t =1

= Composition of clusters changing along
the time,

® Exploit systems of ODEs to model cluster
membership over time,

Clusters of rows

= Enhance sparsity with mixtures of ZIP
distributions. 100 200 300 400

Clusters of columns

Figure: Example of dynamic co-clustering.
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Data and Objectives

The data we consider are organized as follows:

® rows are indexed by i =1,... N,

B columns are indexed by j=1,..., M,

= time instants t € [0, T] during which N and M are fixed;

® the N x M x T tensor X := {Xj(t)} contains the number of
interactions between any observation and feature pair at any Figure: Data structure.
given t.
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The data we consider are organized as follows:

® rows are indexed by i =1,... N,

B columns are indexed by j=1,..., M,

= time instants t € [0, T] during which N and M are fixed;

® the N x M x T tensor X := {Xj(t)} contains the number of
interactions between any observation and feature pair at any

X Figure: Data structure.
given t.

We aim at estimating:
® The latent variables for the clustering of rows and columns into @ and L groups,

® A latent variable for modeling the evolving sparsity of the data.



The Zip-dLBM

® Multinomial random variables to represent the membership to clusters:
2 Zi(t) ~ M(1,a(t) := (aa(t), ..., ae(t))),
2 W(t) ~ M(L,8(t) = (Bu(t), - ., Bu(t))).

m Zero-Inflated Poisson distribution to model the data:
2 Xi(8)[Zi(t), Wi(t) ~ ZIP(Azye),w(e), ™(t))-
where:

B A: block-dependent Poisson intensity parameter,
B 7(t): sparsity at any given time period.

Xij(t)|Zi(t), Wi(t) ~ 50(X,-j(t)) with probability m(t)
Xii(£)1Zi(t), Wi(t) ~ P(Az ) wi(r)) with probability 1 — (t)
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® Multinomial random variables to represent the membership to clusters:
2 Zi(t) ~ M(1,a(t) := (aa(t), ..., ae(t))),
2 W(t) ~ M(L,8(t) = (Bu(t), - ., Bu(t))).

m Zero-Inflated Poisson distribution to model the data:
2 Xi(8)[Zi(t), Wi(t) ~ ZIP(Azye),w(e), ™(t))-
where:

B A: block-dependent Poisson intensity parameter,
B 7(t): sparsity at any given time period.

Xii(t)|Zi(t), Wi(t) ~ 50(X,-j(t)) with probability 7 (t) 1
Xij(t)|Zi(t), Wi(t) ~ P(Az),w,r)) Wwith probability 1 — m(t) S
® To model the data sparsity we introduce: Aj(t) ~ B(n(t)):
{X,-,-(tnz,-(r), W) ~ 8o(Xs(t))  if Ay(t) =1 "
Xii(8)|Zi(t), Wi(t) ~ P(Az (o)) if Ay(t) =0
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The Zip-dLBM

B The evolving mixing proportion and the sparsity parameter are assumed to be generated by
three systems of ODEs.

= We discretize the dynamic systems by making use of their Euler scheme:

e2q(t)

O a(t+1) = a(t) + fz(a(t)), with ag(t) = SO e
) - with Bo(t) = e

b(t +1) = b(t) + fw(b(t)), th 5e(t) S e
5 e(t+1) = c(t) + fale()), with 7(t) = 7Sy
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The Zip-dLBM

B The evolving mixing proportion and the sparsity parameter are assumed to be generated by
three systems of ODEs.
= We discretize the dynamic systems by making use of their Euler scheme:

0 a(t+1) = a(t) + fz(a(t)), with ag(t) = —or—,
Eq:l eq(t)
o b(t+1) = b(t) + fw(b(1)), with fy(t) = £ —,
2y 0

O c(t+1) = c(t) + falc(t)), with 7(t) = T -

® Where fz, fyy and f4 are three fully connected neural networks.



The Zip-dLBM
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Figure: Graphical representation of Zip-dLBM.




The joint distribution

Given 6 = (A, «, B, 7), we can compute the likelihood of the complete data:
p(X,Z, W,Al0) = p(X|Z, W, AN, m)p(A | m)p(Z|a)p(W|B) ®3)

where:

N M T Axij((f)) © (1=45(1))
Aji(t) Zi(t)W;(t
p(X|A, Z, WA, 7) = | | | | | | 175 Cy=op (Tt)JI exp(—/\z,.(t)wj(t))> . (4)

p(Alr) = HH H’/’I’(t)Aij(t) (1 _ ﬂ(t))>(1**‘ij(f))7 o
N Q T

p(Zla) = [[TTT]eatt)™®, o

p(W|B) = H [T seoy e, -
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The inference: Variational assumptions assumptions

Goal: maximization of the log-likelihood with respect to the model parameters.
® We rely on the Variational-EM algorithm (VEM).
Given a variational distribution g(-):

log p(X[0) = L(q;0) + KL(a(.)I[p(-|X,0)),

where:
200 - T E Lot WA AT
_ p(X7A7 Z’ Wle)
= Eq(A,z,W) [Iog W]
KUGOIPLX0) = =323 a2, W. 4)og -

a(Z, W, A)



The inference: Variational assumptions assumptions

Goal: maximization of the log-likelihood with respect to the model parameters.
® We rely on the Variational-EM algorithm (VEM).
Given a variational distribution g(-):

log p(X[0) = L(q;0) + KL(a(.)I[p(-|X,0)),

where:
p(X, A, Z, W|§)
£(q,0) = ZZZ q(Z, W, A)log SEA
p(X, A, Z, W|)
= q(A,Z,W)[log TWAZW) ]
p(Z, W, AIX,6)
KL(q()llp(1X, 6)) ZZZ (2, W, A)log ===
In order to optimize this lower bound £(gq, 0) we assume that q(A, Z, W) can be factorized:
N MOT N MoT
(2, W, A) = a(Z)aW)a(A) = [ [ T[] ] as(» )HHq () [TT] awio)
i=1 j=1 t=1 i=1 t=1 j=1 t=1
N MOT T M oL T
T o0 s+ T e T T
=1 j=1 t=1 i=1 g=1 t=1 j=1 =1 t=1
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The inference: Lower Bound

L(q,0) can be finally expressed as:

L(q,0) ZZZ{ t) log(m(t)1{x,()=0}) + (1 —(s,-j(r)){mgu — (t))+
L
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The inference: VEM Algorithm

m VE-Step: Lower bound maximization with respect to q(A, Z, W).
The optimal sequential updates of the variational distributions are computed through:
- log g"(A) = Ew.z[log p(X, A, Z, W | 0)]
" log q*(Z) = Ew.allog p(X, A, Z, W | 0)]
g IOg q*(W) = EA,Z[log p(Xa A7 27 w | 9)]
m M-Step: Lower bound maximization with respect to § = («, 3, 7, A).
0 The derived optimal update of A is:

S {qu(t)nje(t) (X0 = 8s(0)x3(0)) }

i=1 j=1 t=1

XN: ZM: zT: {Tiq(t)ﬁje(f) (1 - 6,-,-(t))}

i=1 j=1 t=1

Nge =

0 The optimal updates of o, 8 and 7 are obtained through a stochastic gradient descent
optimization process.

0



Introductory example
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Example on simulated data - Model selection

Component activation: alpha Component activation: beta

Row cluster proportions.
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Example on simulated data - Model selection

Component activation: alpha Component activation: beta

04 06 08 10

Row cluster proportions.
a
L

Column cluster proportions

0
00 02

= 50 simulated dataset;
® The maximum of the given @ and L is 10;
m Zip-dLBM succeeds 86% of the time to identify the correct model (Q = 3, L = 2).
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Table: Model selection. Percentage of activated components on 50 simulated datasets. The highlighted

cell ﬁorresponds to the actual value of Q and L.



Zip-dLBM Appication: London Bikes - Departure Stations

Estimated a(i)

=]
&
'
°
8
°
8
°
5
°
8
°
°
b

=]
&
'
g
°
b
&
2

065

o
b4
[ ]
8
s
3
°
]
°
a
°
B

04

Q
°
e
°
&
°
3
3

027 | 142

clusters of departure stations

'Y
A

° ] ] ] ° °
Al A2 A3 A4 A5 A6
clusters of arrival stations

snicuiaber]

22-09-2021, t=1

Willesden

%&g\"‘iﬁi"ﬁﬁﬂ" mff “\N";%mun ay I

A e 2
ey Tour \/é;"""’ o _
Lo o < % Westtam 8
syentiles (N N g 8
Maida Vo o ‘\ 3"* ol
o ﬁ T e : s
e \;‘ REr g
L - - Chnning 8
..4, 3
Wms‘
! L ol "o ® °
i‘-ﬁ.m.”‘ 3
8
.pwm‘
‘\.9 ; s
e Greeni 8
<
.;m,{wgn . iy °
2 lmsﬁ'““""” 06 08 10 12 14 16 18 20
ok e, Hours

NA




Zip-dLBM Appication: London Bikes - End Stations

Estimated ()
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The online Zip-dLBM

Same assumptions of Zip-dLBM:
= Multinomial random variables to represent the cluster memberships,
m Zero-Inflated Poisson distribution to model the data,
® Time dependent model parameters generated by dynamic systems.

Goal: Real-time simultaneous cluster of observations (rows) and features (columns) of an
evolving count data matrix.

= A new inference method to perform online co-clustering,

m LSTM networks on a moving window, G4(t), to model the dynamic systems,

® Online change point detection.

Label3
Cell Labell

v

Label2

e

Figure: LSTM neural network.



The online inference

m VE-Step: Lower bound maximization with respect to q(A, Z, W).
The optimal sequential updates of the variational distributions are computed through:
" log g"(A) = Eqw,z)[log p(X, A, Z, W | 0)]
" logq"(Z) = Eqw,mllog p(X, A, Z, W | )]
U IOg q*(W) = Eq(A,Z)[IOg p(X7 A7 Za w | 0)]



The online inference

m VE-Step: Lower bound maximization with respect to q(A, Z, W).
The optimal sequential updates of the variational distributions are computed through:
" log g"(A) = Eqw,z)[log p(X, A, Z, W | 0)]
" logq"(Z) = Eqw,mllog p(X, A, Z, W | )]
U |0g q*(W) = Eq(A,Z)[Iogp(XyAv 27 w ‘ 0)]

m M-Step: Lower bound maximization with respect to 6§ = (A, a(t), B(t), 7(t)).
0 The optimal update of A is:
Dold Nc(;?

Ry = A . D5
gt — "lg o t t)’
qud + D‘(ﬂ) Dgzd + DE,Z)

] Ngéd and Dgzd are known at time t — 1,

| Nf,? and Dg? are the current updates at time t.

U The optimal updates of «(t), 5(t) and 7(t) are obtained through:
B Introduction of a moving window Gy(t),
B f, fyy and fz parametrized by LSTMs neural network,
B loss minimization.

S



The online inference

Algorithm 1 VEM-SGD Algorithm for Stream Zip-dLBM

Require: X,Q, L, Quaw, Lmax, maz.iter, Gy(t).
while New observations X (t) come: do

Initialization of «(t), B(t), m(t), A with LBM; % with Q, and i

for it = 1 to maax.iter do
VE-Step:
for p = 1 to Fixed.Point do

alternatively update (t), 7(t), n(t); % fiz point eqs

end for
M-Step:

Update 0 = (A, 7(t), a(t), 5(1))-
old (z)
Age = Aght 2 + 2 :
(1) (t)
Do+ D) D+ D,
Update «(t), 3(t), w(t) %LSTM on the moving window t € Gg(t)
end for

Discard all the observation before G4(t)
end while

Figure: Pseudocode of the online inference algorithm.



Example on simulated data

Figure: Simulated o.
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Application on a Pharmacovigilance dataset



Pharmacovigilance data

We consider adverse drug reaction (ADR) data collected by the Regional Center of
Pharmacovigilance (RCPV), located in the University Hospital of Nice:

2.3 million inhabitants; ;

® time horizon of 7 years (month as unity |
measure);

m 39 267 notifications in the dataset;

= we consider only drugs and ADRs notified :
more than 10 times;
® 419 drugs, 614 ADRs and 87 months

® extreme data sparsity, ranging around
99%.

Figure: Histogram of declarations over time, with
change points.



Results
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e
Conclusion

The proposed approach:
B is a dynamic co-clustering method for evolving count matrices,
® it allows to summarize large sets of count data that are observed along the time,
B allows to detect changes in data evolution since observations are allowed to change cluster
membership over time,

= the experiment on pharmacovigilance data provided a meaningful segmentation of drugs and
adverse drug reactions.



Conclusion

The proposed approach:
B is a dynamic co-clustering method for evolving count matrices,
® it allows to summarize large sets of count data that are observed along the time,

B allows to detect changes in data evolution since observations are allowed to change cluster
membership over time,

= the experiment on pharmacovigilance data provided a meaningful segmentation of drugs and
adverse drug reactions.

Further works:
m Allow the sparsity parameter 7(t) to be block-dependent,
® Develop an online model selection method,

® Develop a web platform based for the RCPV. Once implemented, it will regularly run on a
center machine, automatically fitting the model to incoming data.



Thank you for your attention!
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