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Introduction

In many applications, statistical learning has to face new needs:
� High-dimensional data,
� Extracting insights from complex datasets,
� Existence of time-dependent patterns.

The challenges of high-dimensional data:
� Curse of dimensionality,
� Computational challenges,
� Sparsity.
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Pharmacovigilance data

The problem in the pharmacovigilance context:
� The method currently used is incomplete,
� The signal detection process is not automated,
� Each Regional Center of Pharmacovigilance (RCPV) has to process a massive amount of data.

The missions of the RCPV of Nice:
� Detecting safety signals about drugs,
� Answering to questions of health professionals and patients

about drugs,
� Promoting the proper use of the medical products.

Our goals:
� Provide useful summaries for medical authorities,
� Identifying possible unexpected phenomena.
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The role of unsupervised learning
Various methods to address challenges of massive and high-dimensional data:

� Dimension reduction: data are represented within lower-dimensional subspaces,
� Clustering: grouping similar rows of a data matrix,
� Co-clustering: simultaneously clustering rows and columns of a matrix.
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The pharmacovigilance data structure

Figure: Evolution of spontaneous reports to RCPV from 2010 to 2020, a small sample is considered.
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Time-dependent discrete data

Goals:
� Interpret massive streams of interaction

data,
� Summarize dynamic datasets,
� Detect changes in cluster memberships,
� Sparsity modeling.

� Dynamic co-clustering,
� Sparse dynamic co-clustering,
� Online sparse co-clustering.
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Time-dependent discrete data

Goals:
� Interpret massive streams of interaction

data,
� Summarize dynamic datasets,
� Detect changes in cluster memberships,
� Sparsity modeling.

Contributions:
� Dynamic co-clustering,
� Sparse dynamic co-clustering,
� Online sparse co-clustering.
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The goal

� Composition of clusters changing along
the time,

� Exploit systems of ODEs to model cluster
membership over time,

� Enhance sparsity with mixtures of ZIP
distributions.

Figure: Example of dynamic co-clustering.
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Data and Objectives

The data we consider are organized as follows:

� rows are indexed by i = 1, . . .N;

� columns are indexed by j = 1, . . . ,M;

� time instants t ∈ [0,T ] during which N and M are fixed;

� the N ×M × T tensor X := {Xij(t)} contains the number of
interactions between any observation and feature pair at any
given t.

Xij(t)

Figure: Data structure.

We aim at estimating:
� The latent variables for the clustering of rows and columns into Q and L groups,
� A latent variable for modeling the evolving sparsity of the data.
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The Zip-dLBM
� Multinomial random variables to represent the membership to clusters:

� Zi(t) ∼M(1, α(t) := (α1(t), . . . , αQ(t))),
� Wj(t) ∼M(1, β(t) := (β1(t), . . . , βL(t))).

� Zero-Inflated Poisson distribution to model the data:
� Xij(t)|Zi(t),Wj(t) ∼ ZIP(ΛZi (t),Wj (t), π(t)).

where:
� Λ: block-dependent Poisson intensity parameter,
� π(t): sparsity at any given time period.{

Xij(t)|Zi(t),Wj(t) ∼ δ0(Xij(t)) with probability π(t)
Xij(t)|Zi(t),Wj(t) ∼ P(ΛZi (t),Wj (t)) with probability 1− π(t)

(1)

� To model the data sparsity we introduce: Aij(t) ∼ B(π(t)):{
Xij(t)|Zi(t),Wj(t) ∼ δ0(Xij(t)) if Aij(t) = 1
Xij(t)|Zi(t),Wj(t) ∼ P(ΛZi (t),Wj (t)) if Aij(t) = 0

(2)
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The Zip-dLBM

� The evolving mixing proportion and the sparsity parameter are assumed to be generated by
three systems of ODEs.

� We discretize the dynamic systems by making use of their Euler scheme:

� a(t + 1) = a(t) + fZ (a(t)), with αq(t) = eaq (t)∑Q
q=1

eaq(t)
,

� b(t + 1) = b(t) + fW (b(t)), with β`(t) = eb`(t)∑L
`=1

eb
`

(t)
,

� c(t + 1) = c(t) + fA(c(t)), with π(t) = ec(t)

ec(t)+e(1−c(t)) .

� Where fZ , fW and fA are three fully connected neural networks.
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The Zip-dLBM
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fZ (·)

b(t) b(t − 1)
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Figure: Graphical representation of Zip-dLBM.
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The joint distribution
Given θ = (Λ, α, β, π), we can compute the likelihood of the complete data:

p(X ,Z ,W ,A|θ) = p(X |Z ,W ,A,Λ, π)p(A | π)p(Z |α)p(W |β) (3)

where:

p(X |A,Z ,W ,Λ, π) =
N∏
i=1

M∏
j=1

T∏
t=1

1Aij (t)
{Xij (t)=0}


(

ΛXij (t)
Zi (t)Wj (t)

Xij(t)! exp(−ΛZi (t)Wj (t))

)(1−Aij (t)) , (4)

p(A|π) =
N∏
i=1

M∏
j=1

T∏
t=1

π(t)Aij (t)
(

1− π(t))
)(1−Aij (t))

, (5)

p(Z |α) =
N∏
i=1

Q∏
q=1

T∏
t=1

αq(t)Ziq(t), (6)

p(W |β) =
M∏
j=1

L∏
`=1

T∏
t=1

β`(t)Wj`(t). (7)
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The inference: Variational assumptions assumptions
Goal: maximization of the log-likelihood with respect to the model parameters.

� We rely on the Variational-EM algorithm (VEM).
Given a variational distribution q(·):

log p(X |θ) = L(q; θ) + KL(q(.)||p(.|X , θ)),
where:

L(q, θ) =
∑
Z

∑
W

∑
A

q(Z ,W ,A) log p(X ,A,Z ,W |θ)
q(Z ,W ,A)

= Eq(A,Z ,W )

[
log p(X ,A,Z ,W |θ)

q(A,Z ,W )

]
.

KL(q(.)||p(.|X , θ)) = −
∑
Z

∑
W

∑
A

q(Z ,W ,A) log p(Z ,W ,A|X , θ)
q(Z ,W ,A) .

In order to optimize this lower bound L(q, θ) we assume that q(A,Z ,W ) can be factorized:

q(Z ,W ,A) = q(Z)q(W )q(A) =
N∏
i=1

M∏
j=1

T∏
t=1

q(Aij (t))
N∏
i=1

T∏
t=1

q(Zi (t))
M∏
j=1

T∏
t=1

q(Wj (t))

=
N∏
i=1

M∏
j=1

T∏
t=1

δij (t)Aij (t)(1 − δij (t))1−Aij (t)
N∏
i=1

Q∏
q=1

T∏
t=1

τiq(t)Ziq(t)
M∏
j=1

L∏
`=1

T∏
t=1

ηj`(t)Wj`(t).
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The inference: Lower Bound

L(q, θ) can be finally expressed as:

L(q, θ) =
T∑
t=1

N∑
i=1

M∑
j=1

{
δij(t) log(π(t)1{Xij (t)=0}) + (1− δij(t))

[
log(1− π(t))+

+
Q∑

q=1

L∑
`=1

{
τiq(t)ηj`(t)Xij(t) log Λq` − τiq(t)ηj`(t)Λq`

}]
− (1− δij(t)) log(Xij(t)!)

}
+

+
T∑
t=1

N∑
i=1

Q∑
q=1

τiq(t) log(αq(t))+
T∑
t=1

M∑
j=1

L∑
`=1

ηj`(t) log(β`(t))−
T∑
t=1

N∑
i=1

Q∑
q=1

τiq(t) log τiq(t)+

−
T∑
t=1

M∑
j=1

L∑
`=1

ηj`(t) log(ηj`(t))−
T∑
t=1

N∑
i=1

M∑
j=1

(
δij(t) log(δij(t)) + (1− δij(t)) log(1− δij(t))

)
.
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The inference: VEM Algorithm

� VE-Step: Lower bound maximization with respect to q(A,Z ,W ).
The optimal sequential updates of the variational distributions are computed through:

� log q∗(A) = EW ,Z [log p(X ,A,Z ,W | θ)]
� log q∗(Z) = EW ,A[log p(X ,A,Z ,W | θ)]
� log q∗(W ) = EA,Z [log p(X ,A,Z ,W | θ)]

� M-Step: Lower bound maximization with respect to θ = (α, β, π,Λ).
� The derived optimal update of Λ is:

Λ̂q` =

N∑
i=1

M∑
j=1

T∑
t=1

{
τiq(t)ηj`(t)

(
Xij(t)− δij(t)Xij(t)

)}
N∑
i=1

M∑
j=1

T∑
t=1

{
τiq(t)ηj`(t)

(
1− δij(t)

)}
� The optimal updates of α, β and π are obtained through a stochastic gradient descent

optimization process.
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Introductory example
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Example on simulated data - Model selection
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� 50 simulated dataset;
� The maximum of the given Q and L is 10;
� Zip-dLBM succeeds 86% of the time to identify the correct model (Q = 3, L = 2).

Q/L 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 86 0 0 0 0 0 0 0 0
4 0 2 0 0 0 0 0 0 0 0
5 0 2 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 4 0 0 0 0 0 0 0 0
9 0 2 0 0 0 0 0 0 0 0
10 0 4 0 0 0 0 0 0 0 0

Table: Model selection. Percentage of activated components on 50 simulated datasets. The highlighted
cell corresponds to the actual value of Q and L.
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Zip-dLBM Appication: London Bikes - Departure Stations
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Zip-dLBM Appication: London Bikes - End Stations
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The online Zip-dLBM
Same assumptions of Zip-dLBM:

� Multinomial random variables to represent the cluster memberships,
� Zero-Inflated Poisson distribution to model the data,
� Time dependent model parameters generated by dynamic systems.

Goal: Real-time simultaneous cluster of observations (rows) and features (columns) of an
evolving count data matrix.

� A new inference method to perform online co-clustering,
� LSTM networks on a moving window,Gd(t), to model the dynamic systems,
� Online change point detection.

Figure: LSTM neural network.
24



The online inference
� VE-Step: Lower bound maximization with respect to q(A,Z ,W ).

The optimal sequential updates of the variational distributions are computed through:
� log q∗(A) = Eq(W ,Z)[log p(X ,A,Z ,W | θ)]
� log q∗(Z) = Eq(W ,A)[log p(X ,A,Z ,W | θ)]
� log q∗(W ) = Eq(A,Z)[log p(X ,A,Z ,W | θ)]

� M-Step: Lower bound maximization with respect to θ = (Λ, α(t), β(t), π(t)).
� The optimal update of Λ is:

Λ̂q` = Λ̂old
q` ·

Dold
q`

Dold
q` + D(t)

q`

+
N(t)

q`

Dold
q` + D(t)

q`

,

� Nold
q` and Dold

q` are known at time t − 1,
� N(t)

q`
and D(t)

q`
are the current updates at time t.

� The optimal updates of α(t), β(t) and π(t) are obtained through:
� Introduction of a moving window Gd (t),
� fA, fW and fZ parametrized by LSTMs neural network,
� loss minimization.

25



The online inference
� VE-Step: Lower bound maximization with respect to q(A,Z ,W ).

The optimal sequential updates of the variational distributions are computed through:
� log q∗(A) = Eq(W ,Z)[log p(X ,A,Z ,W | θ)]
� log q∗(Z) = Eq(W ,A)[log p(X ,A,Z ,W | θ)]
� log q∗(W ) = Eq(A,Z)[log p(X ,A,Z ,W | θ)]

� M-Step: Lower bound maximization with respect to θ = (Λ, α(t), β(t), π(t)).
� The optimal update of Λ is:

Λ̂q` = Λ̂old
q` ·

Dold
q`

Dold
q` + D(t)

q`

+
N(t)

q`

Dold
q` + D(t)

q`

,

� Nold
q` and Dold

q` are known at time t − 1,
� N(t)

q`
and D(t)

q`
are the current updates at time t.

� The optimal updates of α(t), β(t) and π(t) are obtained through:
� Introduction of a moving window Gd (t),
� fA, fW and fZ parametrized by LSTMs neural network,
� loss minimization.

25



The online inference

Figure: Pseudocode of the online inference algorithm.
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Example on simulated data
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Figure: Simulated α.
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Figure: Simulated β.

Figure: Real-time evolution of estimated α. Figure: Real-time evolution of estimated β.
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Pharmacovigilance data

We consider adverse drug reaction (ADR) data collected by the Regional Center of
Pharmacovigilance (RCPV), located in the University Hospital of Nice:

� 2.3 million inhabitants;
� time horizon of 7 years (month as unity

measure);
� 39 267 notifications in the dataset;
� we consider only drugs and ADRs notified

more than 10 times;
� 419 drugs, 614 ADRs and 87 months
� extreme data sparsity, ranging around

99%.
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Conclusion

The proposed approach:
� is a dynamic co-clustering method for evolving count matrices,
� it allows to summarize large sets of count data that are observed along the time,
� allows to detect changes in data evolution since observations are allowed to change cluster

membership over time,
� the experiment on pharmacovigilance data provided a meaningful segmentation of drugs and

adverse drug reactions.

Further works:
� Allow the sparsity parameter π(t) to be block-dependent,
� Develop an online model selection method,
� Develop a web platform based for the RCPV. Once implemented, it will regularly run on a

center machine, automatically fitting the model to incoming data.
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Thank you for your attention!
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