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1 Motivation
Goal: Retrieve causal information from observational data, but at extreme levels

The generating mechanism of the system of interest might behave differently in the bulk than in the tails
In climate models, often there might be cycles

(Beljaars et al. 1996; Koukoula et al. 2021)

⇒ no plausible SEM structure (“errors” are correlated)

Question: Can we still define a notion of causality?
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2 Related Work

Gnecco et al. (2021): heavy-tailed linear LSCM

𝑌𝑗 ∶= ∑
𝑘∈pa(𝑗)

𝛽𝑗𝑘𝑌𝑘 + 𝜀𝑗, node 𝑗

the generating mechanism propagates into the tails
extreme events in a node are determined by the noise terms of its ancestors

⇒ some climate mechanisms cannot be represented under this structure, e.g.,
precipitation and soil moisture

Gissibl and Klüppelberg (2018): recursive max-linear models (RMLM)

𝑌𝑗 ∶= max
𝑘∈pa(𝑗)

max (𝛽𝑗𝑘𝑌𝑘, 𝜀𝑗) , node 𝑗

a node is the maximum shock among a set of independent heavy-tailed
factors
the resulting joint distributions are discrete ⇒ tricky to work with
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3 Setting

Assumptions:

Y = (𝑌1, … , 𝑌𝑑)⊤ ∼ 𝐹 and Y1, … , Y𝑛 i.i.d. copies
𝐹 in the max-domain of attraction of a max-stable distribution 𝐺

Y − u∣ Y ≰ u
𝑑→ X̃ as u → ∞

⇒ X̃ follows a multivariate GP distribution associated with 𝐺
Example: Bivariate heavy-tailed LSCM

1.0 1.1 1.2 1.3 1.4 1.5

1.
8

2.
0

2.
2

2.
4

2.
6

Y1

Y
2

−0.1 0.0 0.1 0.2 0.3

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

X
~

1

X~
2

V. Chavez-Demoulin, L. Mhalla, P. Naveau ( HEC, University of Lausanne, Switzerland, Institute of Mathematics, EPFL, Switzerland, CNRS LSCE, France)Causal Discovery in Multivariate Extremes with a Hydrological Analysis of Swiss River Discharges4 / 22



4 Setting
We remove the marginal information and work with X s.t.

X̃ = 𝜎𝑒𝜉X − 1
𝜉 ,

with 𝜎 and 𝜉 the marginal GP parameters

⇒ X is a standard Pareto random vector and can be expressed through its
spectral representation (Ferreira and Haan 2014)

X = 𝐸 + U − max(U),
where U = (𝑈1, … , 𝑈𝑑)⊤ independent of 𝐸 ∼ 𝐸𝑥𝑝(1)
Examples:

𝑈𝑖 independent Gumbel r.v.s with equal scale yield the MGPD
associated with the logistic max-stable distribution
𝑈𝑖 independent log-gamma r.v.s yield the MGPD associated with the
Dirichlet max-stable distribution
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5 Setting
Equivalently

the standard bivariate Pareto vector has the following construction

{ 𝑋1 = 𝐸 + 𝑉 − max(𝑉 , 0)
𝑋2 = 𝐸 − max(𝑉 , 0)

with 𝑉 (= 𝑈1 − 𝑈2) ⟂⟂ 𝐸
the standard trivariate Pareto vector has the following construction

⎧{
⎨{⎩

𝑋1 = 𝐸 + 𝑉1 − max(𝑉1, 𝑉2, 0)
𝑋2 = 𝐸 + 𝑉2 − max(𝑉1, 𝑉2, 0)
𝑋3 = 𝐸 − max(𝑉1, 𝑉2, 0)

with 𝑉1(= 𝑈1 − 𝑈3), 𝑉2(= 𝑈2 − 𝑈3) ⟂⟂ 𝐸
⇒ the quantity max(V, 0) plays a key role in the system

it drives the dependence between the nodes
it will be central to our definition of extremal causality
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6 Bivariate Examples: Dependence

−5

0

5

10

−5 0 5 10
X1

X
2

−4

0

4

V

V ~ N(0, 2)

−5

0

5

10

−5 0 5 10
X1

X
2

−10

−5

0

V

V ~ N(− 3, 2)

−5

0

5

10

−5 0 5 10
X1

X
2

−8

−6

−4

−2

V

− V ~ Exp(1)

−250

−200

−150

−100

−50

0

−250 −200 −150 −100 −50 0
X1

X
2

−200

−100

0

100

200

V

V = U1 − U2, with Ui ~ Gumbel(0, 0.05)

V. Chavez-Demoulin, L. Mhalla, P. Naveau ( HEC, University of Lausanne, Switzerland, Institute of Mathematics, EPFL, Switzerland, CNRS LSCE, France)Causal Discovery in Multivariate Extremes with a Hydrological Analysis of Swiss River Discharges7 / 22



7 Bivariate Examples: Causality
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⇒ the (strong) causal link between the variables yields a asymmetry in the
tails that is captured by the (strong) asymmetry of 𝑉 around 0
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8 Extremal Causality: Useful Tools

The Wasserstein distance (of order 1) between univariate random variables
𝑋1 ∼ 𝐹1 and 𝑋2 ∼ 𝐹2 is defined as

𝑊(𝑋1, 𝑋2) = ∫
ℝ

|𝐹1(𝑡) − 𝐹2(𝑡)|𝑑𝑡

For X = (𝑋1, … , 𝑋𝑑)⊤ a standard Pareto r.v., we have

𝑊(𝑋𝑖, 𝐸) ≥ 𝑊(𝑋𝑗, 𝐸) ⇔ 𝔼(𝑋𝑖) ≤ 𝔼(𝑋𝑗)

where 𝐸 ∼ 𝐸𝑥𝑝(1) that dominates 𝑋⋅
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9 Extremal Causality: Definition

X a standard Pareto r.v.
Define

𝑑𝑖→𝑗 = {𝑊(𝑋𝑖, 𝐸) − 𝑊(𝑋𝑗, 𝐸)}/ max
𝑘

{𝑊(𝑋𝑘, 𝐸)}

the causal score between 𝑋𝑖 and 𝑋𝑗

Definition
𝑋𝑖 is the extremal cause of 𝑋𝑗, whenever 𝑑𝑖→𝑗 is finite and > 0

E.g., in the bivariate case, 𝑑𝑖→𝑗 = −𝔼(𝑉 )
Causal links as encoded in a heavy-tailed SEM or max-linear model
remain valid at extremal levels, according to our definition
Higher (absolute) values of 𝑑𝑖→𝑗 reflect stronger causal links. But not
too strong …
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10 Extremal Causality: Remarks

Asymmetric and strong extremal dependence reflects a strong
extremal causal link, even when there is no apparent structure of
causality between the variables

Asymmetric and weak extremal dependence reflects a weak extremal
causal link

Strong/weak extremal dependence coupled with symmetry reflects
absence of extremal causal link

⇒ Our definition of extremal causality stems from the strength and
asymmetry of the extremal dependence structure
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11 Simulations (SEM)

Heavy-tailed LSCM

{ 𝑌1 = 𝜖1
𝑌2 = 𝛽𝑌1 + 𝜖2

with 𝜖𝑖 ∼ Pareto with 𝜉=0.1

RMLM

{ 𝑌1 = 𝜖1
𝑌2 = max(𝛽𝑌1, 𝜖2)

with 𝜖𝑖 ∼ Pareto with 𝜉=0.1
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12 Simulations (SEM illustration)
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13 Simulations (SEM with confounder)
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14 Simulations: (asym) logistic model
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15 Floods in Switzerland: Hydrologically simulated dataset

Data simulated using the hydrological modelling system PREVAH
(PREecipitation-Runoff-EVApotranspiration Hydrotope model)
(Brunner et al. 2019; Viviroli et al. 2009)

Dataset consists of 307 catchments in Switzerland for which
discharge
precipitation
snowmelt

were simulated at a daily-resolution from 1981 to 2016

⇒ system of the hydrological variables is spatially dynamic
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16 Floods in Switzerland: Extreme hydrological drivers

Goal: assess the extremal causal mechanisms over all catchments during
Spring (March-April-May)

Data pre-processing: take into account the time-lag between the
hydrological variables

⇒ temporally match the variables without imposing a time direction that
might bias their causal dynamics (𝑛 = 3309 obs.)

For each of the 307 catchments

we compute the pairwise causal scores 𝑑𝑖→𝑗, for 𝑖, 𝑗 = 1, … , 3(𝑖 ≠ 𝑗)
we bootstrap the data to assess uncertainty of 𝑑𝑖→𝑗 (𝐵 = 300)
⇒ retain causal scores with 0 ∉ 𝐶𝐼

V. Chavez-Demoulin, L. Mhalla, P. Naveau ( HEC, University of Lausanne, Switzerland, Institute of Mathematics, EPFL, Switzerland, CNRS LSCE, France)Causal Discovery in Multivariate Extremes with a Hydrological Analysis of Swiss River Discharges17 / 22



17 Floods in Switzerland: Extreme hydrological drivers
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18 Floods in Switzerland: Extreme hydrological drivers
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19 Floods in Switzerland: Extreme hydrological drivers
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20 Conclusions

We define extremal causality relying on a notion of asymmetry in
the limiting MGPD

In the multivariate setting: 𝑑𝑖→𝑗 > 0, ∀𝑗 is equivalent to 𝑖 being a
source node

⇒ the topological (causal) order is retrieved by ordering 𝑊(𝑋𝑖, 𝐸)

Outlook

One can look at causal links in the 𝑈𝑖s of the spectral representation
of the MGPD ⇒ the system can then be seen as a directed acyclic
mixed graph (Henckel et al. 2023)

If we manage to have the spectral representation of the MGPD
associated to the Hüsler–Reiss model, can we link the notion of
conditional independence (Engelke and Hitz 2020) to our definition of
extremal causality?
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