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Motivation




Goal

» Model extremal temporal clustering of stationary time series.

» Infer cluster statistics using block methods.
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» |®; > 0ast— +oo as.
> Q =0/[Oa, where [[x[|§ =3, [xe|*. !

! Janssen (2019)



i.i.d. model

> (X;) i.i.d., X; satisfies RV,

Qt - @t - ]].(t: 0) @0.




Auto-regressive model

» (X;) a stationary AR(1), X; = pX;—1 + Z; with » € (0,1), and (Z;)
i.i.d. satisfying RV,
QY = O/lell. = 'O 1(J+1>0)(1- "),

J independent of ©F, P(J = j) = (1 — ¢*)¢/*,j > 0.
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Causal solution to SRE under Kesten-Goldie assumptions

> (X:) causal solution to SRE, X; = A:X;_1 + Bt, ((At, Bt))
positive i.i.d. and ((A, B)) satisfies Kesten-Goldie theory then

O = Ai---A, t20,

and ©; — 0 a.s. since E[log(A;1)] < 0 holds.

)
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We take A; = eVt—1/2 gych that (N¢) is i.i.d. gaussian noise, and we follow
Example 6.1. in JanBen and Segers (2014) [5] where © _; = A_;--- A_1, for
t<O0.
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Cluster Poisson Point Process

Theorem2 Buritica, Meyer, Mikosch, Wintenberger (2021)
Assume (X;) satisfies RV,,, AC and MX, then

N, _Zg_lx - N= ZZE “Vag,
i=1 jEZL

in Ro, where nP(|X1| > a,) — 1,
® ) ez €Qy i=1,2,..., is an iid sequence of point processes with state
space R? with generic element Q; = (Qj)jez,

o
Q= (m)jez'

e (I';) are points of a unit rate homogeneous Poisson process on (0, c0).
e (I';) and (Q;)i=1,2,... are independent.

2Davis and Hsing (1995); see [1, 3]



Cluster inference
Blocks method

Aim: compute cluster statistic: E[f(YQ)].

n o0
Sofar: Ny =31 e,y > N=3013 icz6r-vaq, -

ij

X[l:n] = (X[l:b,,] 5 an+[1:bn] PECII X[n—b,,+1:bn] )7
—_—— N—— N———

2261 ::Bz IIan

> select k extremal blocks B(y), . .., B,

> average %ZLI f(B(t)/a,,),
> e.g. count threshold exceedances in a block
fo(xe) = > 1(]xe] > 1).



Cluster inference
Blocks method

Aim: compute cluster statistic: E[f(YQ)].

n o0
Sofar: Ny =31 e,y > N=3013 icz6r-vaq, -

i

X[l:n] = (X[l:b,,] 5 an+[1:bn] PECII X[n—b,,+1:bn] )7
N~ —— —
2261 ::Bz IIan
> select k extremal blocks B(y), . .., B,

> average %ZLI f(B(t)/a,,),
> e.g. count threshold exceedances in a block
fo(xe) = > 1(]xe] > 1).

(Q) How to choose those k extremal blocks ?



Large deviations of ¢/P-blocks

Theorem Buritic, Mikosch, Wintenberger (2023)
Assume (X;) satisfies RV,,, and (x,) satisfies AC(x,), CSn(x»), and
nP(|X1| > xp,) — 0. Then,

Xi1.b]
P € Xl > %6,

-y “P(Qe-)

P([ X1, 6,0l > ¥ Xb,,



Large deviations of ¢/P-blocks

Theorem Buritica, Mikosch, Wintenberger (2023)
Assume (X;) satisfies RV, and (x,) satisfies AC(x,), CSp(x,), and
nP(|X1| > xp,) = 0. Then, for p >0,

P([[X[2,,)

X
p > Y Xb,, Hx[[lib] € [ 1Xp1,6,llp > xb,)

1,61l

— y “P(Q®) € )
and

Mim P([[ X1 b1l > x6,)/(baP([Xo| > x5,)) = <(p) = E[[QI]5],

O)x| = c(o0) < c(p) < c(a) =1, for p € (a, 00).



Blocks method

To infer E[f(YQ(P))],

m

= 1
fQp) = ;Zf(Br/IIBrIIp,(k+1))]l(IIBer > [|Btllp,(k+1));

t=1

The same quantity fQ can be estimated using different pairs p’, f’ as

E[Q[2F(YQ®)/[|Q®),)]
Ef[Q@]]

— c(pEIF(YQ®)).

EQ3]

fQ = E[f(YQ)] =

c(p')



Asymptotic normality

We propose to estimate the statistic £Q = E[£,(Y Q)] by

—

1 m
ﬁ? = ; Z f&(Bt/”Bt”a,(kH))]I(HBt”Ei > HBt”&,(kH))a
t=1

Theorem Buritic, Wintenberger (2024)

Under moment, bias and mixing conditions. There exists k = k, — oo,
m/k — oo, such that for suitable £, : {* — R.

Vo (12 - £2)

4 ./\/(O7 Var (f,(YQ)) + m20i> , n— 00,

and kn/k], — &, with K > 0, Y independent of Q, and P(Y > y) =y~ @
for y > 1.



Tail index Hill estimator

Lo L LS (X Xl
an T an(k) Tk &g BN

where |X]|(1) = [X|2) = -+ = |X](n), and k" = k'(n) is a tuning sequence
for the Hill estimator satisfying k' — oo, n/k’ — 00, as n — 0.



Remarks

> (*°-block methods for cluster inference studied in Drees and
Rootzén (2010) [4] with high threshold x : |X;| > xp,. We extend
the analysis to /®-cluster inference selecting the blocks whose
¢%-norm exceed the high threshold x: ||B;|la > xb,-
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bias-variance trade-off in extreme value statistics.



Remarks

> (*°-block methods for cluster inference studied in Drees and
Rootzén (2010) [4] with high threshold x : |X;| > xp,. We extend
the analysis to /®-cluster inference selecting the blocks whose
¢%-norm exceed the high threshold x: ||B;|la > xb,-

» We promote the use of order statistics of /*-norm blocks such that
P
1Blla,(k+1)/x6, — 1.

where k, = [m,P(||Byb, [la > Xb,)|. In this way k, points to the
bias-variance trade-off in extreme value statistics.

> It is common to take k,/k;, — 0. In this case the asymptotic
variance simplifies to Var (f,(YQ)).



Number of extreme blocks

Denote kn(p) = [maP(||B1,b,|lp > x5,)| the extremal £P-blocks, for a
sequence of levels (x,) satisfying AC, CS,,.

For i.i.d. sequence k, = [nP(|Xo| > xp,)] ~ kn(00) ~ kn(p) ~ kn(c)
exceedances.

Heuristic on the number of extreme blocks:

kn(p) ~ maP([|Bullp > xb,) ~ c(p)nP(|Xo| > xp,) ~ c(p)kn,
kn(r) ~ maP([|Billa > xb,) ~ nP(|Xo| > Xp,) ~ kn ,

Assuming also CS,,, a-cluster inference is justified. In this case the tuning
parameter k, does not dependent on the underlying time dependencies.



Extremal index

Maximum domain of attraction
There exists (a,) such that

(P(|X1| € xap))" —  G(x):= ]P’((Fl)*l/o‘ <x), n— oo,

where G(x) = exp{—x"“}, for a > 0, x > 1, nP(X; > a,) — L.



Extremal index

Maximum domain of attraction
There exists (a,) such that

(P(X1] < x@))" =  G(x):=P((M) " <x), n— oo,
where G(x) = exp{—x"“}, for « > 0, x > 1, nP(X; > a,) — 1.
(Leadbetter 1983) there exists 6 € (0, 1] such that

P(IXjznlloe < xa5)  — (G(x))e7 n— oo.




P(|Xpnmlloo < xan) —  (G(x))?, n—oc.

= (P(X1 < xap,))" ~ P([| By,
for xp, = x ap, With [|Byp, /%b,[|loc — 0, as log(1 — x)/x — 0 as x — 0,

o < xap)~ G(x), n— 0.

P(IIB1,6, lloc > Xb,)
b,,]P(|X1| > an)

_>9|X\> n — oQ.

= Blocks estimator based in (Hsing 1991):

~ 1 -
O = 15 2 LBl > Xlgin).

t=1



Example: extremal index

Cluster-based extremal index inference
For example, if £, : (x¢) = ||(xe) |5 /11 (xe) ||,

Ox = E[lQl%]

— Estimator of the extremal index based on extremal ¢“-blocks.

5 1o~ 1BS
0 = — § (I1Bella > 11B]la(
|X| k — ||Bt||a H t” H || k+1)



Causal linear model

Theorem Buritic, Wintenberger (2024)3
Let (X¢) = > ;50 9jZe—j, such that (Z;) is i.i.d. and satisfies RV,. For
p >0, assume ¢ = O(t™"). Assume
1) f, is bounded and p > 3 +2/a.
2) there exist ' > 0, and (k,) satisfying k, = O(nb; " ~1),
Then, if a bias assumption holds and k/k" — 0,
VE(FQ —£9) & (0, Var(£,(YQ))), n— co.

[0

In particular, the a-cluster based estimators for the extremal index has
null asymptotic variance!

3see [2]



Implementation extremal index

If fo = (xe) = | (xS /1 (xe) 1S, then for p = a,

Ox = EllQI]-
—> Estimator of the extremal index based on extremal /“-blocks.
0 1 ¢~ IBIS
0 = = (1B B
M= s B > 1Bl ki)

For the autoregressive process AR(1): Var(f,(Q)) = 0.



Implementation extremal index

Blocks estimator based in (Hsing 1991):
95 - L Shu(s X
x| = mz (I1Belloo > 1X|(k+1)) -
t=1

Direct computations from Example 10.4.2 in (Kulik and Soulier 2020)
yield

\/E(ag(‘ —0x|) 4 N(0,02), n— o0,
where o2 € [0, 0), and

o = 0% DD ENQ AIQI ] - bx,.

JEZ teZL

For the autoregressive process AR(1): 0 =1 — 6)x| > 0.



Case study

Thvee regons

.,

Figure: Location of weather
stations in France.
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Take away

» How to choose extreme blocks plays an important role in inference.
» Estimation of the tail-index can help to stabilize the method.

» (%_blocks inference yields robust result.



Questions?

Thank you for your attention!



Further perspectives

» How to define extremal directions of extremes in space and time?

» Different extremes episodes can have different causes, identify
extreme with comparable features could help environmental
scientists detect and characterize the natural phenomena leading to
an extreme event.
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Simulation setup

) - n Bt :o
Oxto = ko ' o 1(1Bella > 11Blla k), (1)
N 1 O
O = op 2 LBl > Xlgern) (2)
t=1

» We simulate 1000 AR(1) trajectories (X;)¢=1,....n, X¢ = @Xe—1 + Zt,
for n = 8000, 3000, 1000.

» We fix k = k, = n/b? and we use that k,(p) = o(n/b'+""),
> In this setting,

0= Var(fo(YQ™)) < 03 =1 — x|



Extremal index comparison
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Figure: Boxplots based on 1000 simulations of (X;)¢=1,...,» with n = 5000 for
the estimation of 6|x; = 0.8 in the AR(1) model with ¢ = 0.2 and iid
student(1) noise.
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