On blocks estimators

for cluster inference of heavy-tailed time series

Gloria Buriticá

Joint work with O. Wintenberger (LPSM, Paris)

Research center for Statistics, Université de Génève

May 16, 2024

Motivation

Goal

- Model extremal temporal clustering of stationary time series.
- ▶ Infer cluster statistics using block methods.

Key words: Extreme value theory, cluster Poisson point process, blocks methods for cluster inference, extremal index.

Table of contents

- 1. Cluster Poisson Process Q
- 2. Cluster inference
- 3. Example: causal linear model

Notation

We consider

\> (\mathbf{X}_t) stationary time series in $(\mathbb{R}^d, |\cdot|)$.

Notation

We consider

- **\>** (X_t) stationary time series in (\mathbb{R}^d , $|\cdot|$).
- ▶ (\mathbf{X}_t) is regularly varying (RV_α) : for all $h \ge 0$, y > 1,

$$\lim_{x\to+\infty}\mathbb{P}(|\mathbf{X}_0|>y\,x,\frac{\mathbf{X}_{[-h,h]}}{|\mathbf{X}_0|}\in\cdot\,|\,|\mathbf{X}_0|>x)\;=\;y^{-\alpha}\,\mathbb{P}(\Theta_{[-h,h]}\in\cdot).$$

Notation

We consider

- ▶ (\mathbf{X}_t) stationary time series in $(\mathbb{R}^d, |\cdot|)$.
- ▶ (\mathbf{X}_t) is regularly varying (RV_α) : for all $h \ge 0$, y > 1,

$$\lim_{x \to +\infty} \mathbb{P}(|\mathbf{X}_0| > y \, x, \frac{\mathbf{X}_{[-h,h]}}{|\mathbf{X}_0|} \in \cdot \, |\, |\mathbf{X}_0| > x) \; = \; y^{-\alpha} \, \mathbb{P}(\Theta_{[-h,h]} \in \cdot).$$

- $ightharpoonup |m{\Theta}_t|
 ightarrow 0$ as $t
 ightarrow +\infty$ a.s.
- ▶ $\mathbf{Q} = \mathbf{\Theta}/\|\mathbf{\Theta}\|_{\alpha}$, where $\|\mathbf{x}\|_{\alpha}^{\alpha} = \sum_{t \in \mathbb{Z}} |\mathbf{x}_t|^{\alpha}$. ¹

i.i.d. model

 $ightharpoonup (\mathbf{X}_t)$ i.i.d., \mathbf{X}_1 satisfies \mathbf{RV}_{α} ,

$$\mathbf{Q}_t = \mathbf{\Theta}_t = \mathbb{1}(t=0)\mathbf{\Theta}_0.$$

Auto-regressive model

▶ (X_t) a stationary **AR(1)**, $X_t = \varphi X_{t-1} + Z_t$ with $\varphi \in (0,1)$, and (Z_t) i.i.d. satisfying **RV** $_{\alpha}$,

$$\begin{split} Q_t^{(\alpha)} &= \Theta_t / \|\Theta\|_{\alpha} &= \varphi^t \Theta_0^Z \ \mathbb{1}(J+t \geqslant 0) \, (1-\varphi^{\alpha})^{1/\alpha}, \\ J \text{ independent of } \Theta_0^Z, \ \mathbb{P}(J=j) &= (1-\varphi^{\alpha}) \varphi^{j\alpha}, j \geqslant 0. \end{split}$$

Auto-regressive model

▶ (X_t) a stationary **AR(1)**, $X_t = \varphi X_{t-1} + Z_t$ with $\varphi \in (0,1)$, and (Z_t) i.i.d. satisfying **RV** $_{\alpha}$,

$$\begin{split} Q_t^{(\alpha)} &= \Theta_t / \|\Theta\|_{\alpha} &= \varphi^t \Theta_0^Z \ \mathbb{1}(J+t \geqslant 0) \, (1-\varphi^{\alpha})^{1/\alpha}, \\ J \text{ independent of } \Theta_0^Z, \ \mathbb{P}(J=j) &= (1-\varphi^{\alpha}) \varphi^{j\alpha}, j \geqslant 0. \end{split}$$

▶ (X_t) causal solution to SRE, $X_t = A_t X_{t-1} + B_t$, $((A_t, B_t))$ positive i.i.d. and ((A, B)) satisfies Kesten-Goldie theory then

$$\Theta_t = A_t \cdots A_1, \quad t \geqslant 0,$$

and $\Theta_t \to 0$ a.s. since $\mathbb{E}[\log(A_1)] < 0$ holds.

▶ (X_t) causal solution to SRE, $X_t = A_t X_{t-1} + B_t$, $((A_t, B_t))$ positive i.i.d. and ((A, B)) satisfies Kesten-Goldie theory then

$$\Theta_t = A_t \cdots A_1, \quad t \geqslant 0,$$

and $\Theta_t \to 0$ a.s. since $\mathbb{E}[\log(A_1)] < 0$ holds.

▶ (X_t) causal solution to SRE, $X_t = A_t X_{t-1} + B_t$, $((A_t, B_t))$ positive i.i.d. and ((A, B)) satisfies Kesten-Goldie theory then

$$\Theta_t = A_t \cdots A_1, \quad t \geqslant 0,$$

and $\Theta_t \to 0$ a.s. since $\mathbb{E}[\log(A_1)] < 0$ holds.

▶ (X_t) causal solution to SRE, $X_t = A_t X_{t-1} + B_t$, $((A_t, B_t))$ positive i.i.d. and ((A, B)) satisfies Kesten-Goldie theory then

$$\Theta_t = A_t \cdots A_1, \quad t \geqslant 0,$$

and $\Theta_t \to 0$ a.s. since $\mathbb{E}[\log(A_1)] < 0$ holds.

Cluster Poisson Point Process

Theorem² Buriticá, Meyer, Mikosch, Wintenberger (2021)

Assume (X_t) satisfies RV_{α} , AC and MX, then

$$N_n = \sum_{i=1}^n \varepsilon_{\mathbf{a}_n^{-1} X_i} \quad \to \quad N = \sum_{i=1}^\infty \sum_{j \in \mathbb{Z}} \varepsilon_{\Gamma_i^{-1/\alpha} \mathbf{Q}_{ij}} \,,$$

in \mathbb{R}_0 , where $n\mathbb{P}(|\mathbf{X}_1|>a_n) o 1$,

• $\sum_{j\in\mathbb{Z}} \varepsilon_{\mathbf{Q}_{ij}}$, $i=1,2,\ldots$, is an iid sequence of point processes with state space \mathbb{R}^d with generic element $\mathbf{Q}_i = (\mathbf{Q}_{ij})_{j\in\mathbb{Z}}$,

$$\mathbf{Q} = \left(\frac{\Theta_j}{\|\Theta\|_{\alpha}} \right)_{j \in \mathbb{Z}}.$$

- (Γ_i) are points of a unit rate homogeneous Poisson process on $(0,\infty)$.
- (Γ_i) and $(\mathbf{Q}_i)_{i=1,2,...}$ are independent.

²Davis and Hsing (1995); see [1, 3]

Cluster inference

Blocks method

Aim: compute cluster statistic: $\mathbb{E}[f(Y\mathbf{Q})]$.

So far:
$$N_n = \sum_{i=1}^n \varepsilon_{a_n^{-1}X_i} \to N = \sum_{i=1}^\infty \sum_{j \in \mathbb{Z}} \varepsilon_{\Gamma_i^{-1/\alpha} \mathbf{Q}_{ij}}$$
.
$$\mathbf{X}_{[1:n]} = \left(\underbrace{\mathbf{X}_{[1:b_n]}}_{:=\mathcal{B}_1}, \underbrace{\mathbf{X}_{b_n + [1:b_n]}}_{:=\mathcal{B}_2}, \dots, \underbrace{\mathbf{X}_{[n-b_n+1:b_n]}}_{:=\mathcal{B}_m} \right),$$

- ▶ select k extremal blocks $\mathcal{B}_{(1)}, \ldots, \mathcal{B}_{(k)}$,
- ▶ average $\frac{1}{k} \sum_{t=1}^{k} f(\mathcal{B}_{(t)}/a_n)$,
- e.g. count threshold exceedances in a block $f: (\mathbf{x}_t) \mapsto \sum \mathbb{1}(|\mathbf{x}_t| > 1)$.

Cluster inference

Blocks method

Aim: compute cluster statistic: $\mathbb{E}[f(Y\mathbf{Q})]$.

So far:
$$N_n = \sum_{i=1}^n \varepsilon_{a_n^{-1}X_i} \to N = \sum_{i=1}^\infty \sum_{j \in \mathbb{Z}} \varepsilon_{\Gamma_i^{-1/\alpha}\mathbf{Q}_{ij}}.$$

$$\mathbf{X}_{[1:n]} = \big(\underbrace{\mathbf{X}_{[1:b_n]}}_{\dots, \mathbf{R}_n}, \underbrace{\mathbf{X}_{b_n + [1:b_n]}}_{\dots, \mathbf{R}_n}, \dots, \underbrace{\mathbf{X}_{[n-b_n+1:b_n]}}_{\dots, \mathbf{R}_n}\big),$$

- ▶ select k extremal blocks $\mathcal{B}_{(1)}, \ldots, \mathcal{B}_{(k)}$,
- ▶ average $\frac{1}{k} \sum_{t=1}^{k} f(\mathcal{B}_{(t)}/a_n)$,
- e.g. count threshold exceedances in a block $f: (\mathbf{x}_t) \mapsto \sum \mathbb{1}(|\mathbf{x}_t| > 1)$.
- (Q) How to choose those k extremal blocks?

Large deviations of ℓ^p -blocks

Theorem Buriticá, Mikosch, Wintenberger (2023)

Assume (\mathbf{X}_t) satisfies \mathbf{RV}_{α} , and (x_n) satisfies $\mathbf{AC}(x_n)$, $\mathbf{CS}_{\alpha}(x_n)$, and $n\mathbb{P}(|\mathbf{X}_1|>x_{b_n})\to 0$. Then,

$$\mathbb{P}(\|\mathbf{X}_{[1,b_n]}\|_{\alpha} > y \, x_{b_n}, \frac{\mathbf{X}_{[1,b_n]}}{\|\mathbf{X}_{[1,b_n]}\|_{\alpha}} \in \cdot |\|\mathbf{X}_{[1,b_n]}\|_{\alpha} > x_{b_n}) \\
\to y^{-\alpha} \mathbb{P}(\mathbf{Q} \in \cdot)$$

Large deviations of ℓ^p -blocks

Theorem Buriticá, Mikosch, Wintenberger (2023)

Assume (\mathbf{X}_t) satisfies \mathbf{RV}_{α} , and (x_n) satisfies $\mathbf{AC}(x_n)$, $\mathbf{CS}_{\rho}(x_n)$, and $n\mathbb{P}(|\mathbf{X}_1|>x_{b_n})\to 0$. Then, for $\rho>0$,

$$\mathbb{P}(\|\mathbf{X}_{[1,b_n]}\|_{p} > y \, x_{b_n}, \frac{\mathbf{X}_{[1,b_n]}}{\|\mathbf{X}_{[1,b_n]}\|_{p}} \in \cdot |\|\mathbf{X}_{[1,b_n]}\|_{p} > x_{b_n}) \\
\to y^{-\alpha} \mathbb{P}(\mathbf{Q}^{(p)} \in \cdot)$$

and

$$\lim_{n\to\infty}\mathbb{P}(\|\mathbf{X}_{[1,b_n]}\|_{\rho}>x_{b_n})/(b_n\mathbb{P}(|\mathbf{X}_0|>x_{b_n})) = c(\rho) = \mathbb{E}[\|\mathbf{Q}\|_{\rho}^{\alpha}],$$

$$\theta_{|\mathbf{X}|} = c(\infty) \leqslant c(p) \leqslant c(\alpha) = 1$$
, for $p \in (\alpha, \infty)$.

Blocks method

To infer $\mathbb{E}[f(Y\mathbf{Q}^{(p)})]$,

$$\widehat{f^{\mathbf{Q}}}(p) := \frac{1}{k} \sum_{t=1}^{m} f(\mathcal{B}_{t}/\|\mathcal{B}_{t}\|_{p,(k+1)}) 1 (\|\mathcal{B}_{t}\|_{p} > \|\mathcal{B}_{t}\|_{p,(k+1)}),$$

The same quantity $f^{\mathbf{Q}}$ can be estimated using different pairs p', f' as

$$f^{\mathbf{Q}} = \mathbb{E}[f(Y\mathbf{Q})] = \frac{\mathbb{E}[\|\mathbf{Q}^{(p')}\|_{\alpha}^{\alpha}f(Y\mathbf{Q}^{(p')}/\|\mathbf{Q}^{(p')}\|_{p})]}{\mathbb{E}[\|\mathbf{Q}^{(p')}\|_{\alpha}^{\alpha}]}$$
$$= c(p')\mathbb{E}[f'(Y\mathbf{Q}^{(p')})].$$
$$c(p') = \mathbb{E}[\|\mathbf{Q}\|_{p'}^{\alpha}].$$

Asymptotic normality

We propose to estimate the statistic $f_{\alpha}^{\mathbf{Q}} = \mathbb{E}[f_{\alpha}(Y\mathbf{Q})]$ by

$$\widehat{f_{\alpha}^{\mathbf{Q}}} \ := \ \frac{1}{k} \sum_{t=1}^m f_{\widehat{\alpha}} \big(\mathcal{B}_t / \|\mathcal{B}_t\|_{\widehat{\alpha},(k+1)} \big) 1 \!\! 1 \big(\|\mathcal{B}_t\|_{\widehat{\alpha}} > \|\mathcal{B}_t\|_{\widehat{\alpha},(k+1)} \big),$$

Theorem Buriticá, Wintenberger (2024)

Under moment, bias and mixing conditions. There exists $k=k_n\to\infty$, $m/k\to\infty$, such that for suitable $f_\alpha:\ell^\alpha\to\mathbb{R}$.

$$\begin{split} \sqrt{\textit{k}_{\textit{n}}} \left(\widehat{f_{\widehat{\alpha}}^{\textbf{Q}}} - f_{\alpha}^{\textbf{Q}} \right) \\ &\stackrel{\textit{d}}{\rightarrow} \quad \mathcal{N} \Big(0, \textit{Var} \big(f_{\alpha} \big(\textit{Y} \textbf{Q} \big) \big) + \kappa^2 \sigma_{\alpha}^2 \, \Big) \,, \quad \textit{n} \rightarrow \infty, \end{split}$$

and $k_n/k_n' \to \kappa$, with $\kappa \geqslant 0$, Y independent of \mathbb{Q} , and $\mathbb{P}(Y > y) = y^{-\alpha}$, for y > 1.

Tail index Hill estimator

$$\frac{1}{\widehat{\alpha}^n} := \frac{1}{\widehat{\alpha}^n(k')} := \frac{1}{k'} \sum_{t=1}^n \log(|\mathbf{X}_t|/|\mathbf{X}|_{(k'+1)}),$$

where $|\mathbf{X}|_{(1)}\geqslant |\mathbf{X}|_{(2)}\geqslant \cdots \geqslant |\mathbf{X}|_{(n)}$, and k'=k'(n) is a tuning sequence for the Hill estimator satisfying $k'\to\infty$, $n/k'\to\infty$, as $n\to\infty$.

Remarks

▶ ℓ^{∞} -block methods for cluster inference studied in Drees and Rootzén (2010) [4] with high threshold $x: |\mathbf{X}_t| > x_{b_n}$. We extend the analysis to $\ell^{\widehat{\alpha}}$ -cluster inference selecting the blocks whose $\ell^{\widehat{\alpha}}$ -norm exceed the high threshold $x: \|\mathcal{B}_t\|_{\widehat{\alpha}} > x_{b_n}$.

Remarks

- ▶ ℓ^{∞} -block methods for cluster inference studied in Drees and Rootzén (2010) [4] with high threshold $x: |\mathbf{X}_t| > x_{b_n}$. We extend the analysis to $\ell^{\widehat{\alpha}}$ -cluster inference selecting the blocks whose $\ell^{\widehat{\alpha}}$ -norm exceed the high threshold $x: \|\mathcal{B}_t\|_{\widehat{\alpha}} > x_{b_n}$.
- lackbox We promote the use of order statistics of $\ell^{\widehat{lpha}}$ -norm blocks such that

$$\|\mathcal{B}\|_{\widehat{\alpha},(k+1)}/x_{b_n} \stackrel{\mathbb{P}}{\to} 1.$$

where $k_n = \lceil m_n \mathbb{P}(\|\mathcal{B}_{1,b_n}\|_{\alpha} > x_{b_n}) \rceil$. In this way k_n points to the bias-variance trade-off in extreme value statistics.

Remarks

- ▶ ℓ^{∞} -block methods for cluster inference studied in Drees and Rootzén (2010) [4] with high threshold $x: |\mathbf{X}_t| > x_{b_n}$. We extend the analysis to $\ell^{\widehat{\alpha}}$ -cluster inference selecting the blocks whose $\ell^{\widehat{\alpha}}$ -norm exceed the high threshold $x: \|\mathcal{B}_t\|_{\widehat{\alpha}} > x_{b_n}$.
- lackbox We promote the use of order statistics of $\ell^{\widehat{lpha}}$ -norm blocks such that

$$\|\mathcal{B}\|_{\widehat{\alpha},(k+1)}/x_{b_n} \stackrel{\mathbb{P}}{\to} 1.$$

where $k_n = \lceil m_n \mathbb{P}(\|\mathcal{B}_{1,b_n}\|_{\alpha} > x_{b_n}) \rceil$. In this way k_n points to the bias-variance trade-off in extreme value statistics.

▶ It is common to take $k_n/k_n' \to 0$. In this case the asymptotic variance simplifies to $Var(f_\alpha(Y\mathbf{Q}))$.

Number of extreme blocks

Denote $k_n(p) = \lceil m_n \mathbb{P}(\|\mathcal{B}_{1,b_n}\|_p > x_{b_n}) \rceil$ the extremal ℓ^p -blocks, for a sequence of levels (x_n) satisfying **AC**, \mathbf{CS}_p .

For i.i.d. sequence $k_n = \lceil n \mathbb{P}(|\mathbf{X}_0| > x_{b_n}) \rceil \sim k_n(\infty) \sim k_n(p) \sim k_n(\alpha)$ exceedances.

Heuristic on the number of extreme blocks:

$$\begin{aligned} k_n(p) &\sim m_n \mathbb{P}(\|\mathcal{B}_1\|_p > x_{b_n}) \sim c(p) n \mathbb{P}(|\mathbf{X}_0| > x_{b_n}) \sim c(p) k_n \,, \\ k_n(\alpha) &\sim m_n \mathbb{P}(\|\mathcal{B}_1\|_\alpha > x_{b_n}) \sim n \mathbb{P}(|\mathbf{X}_0| > x_{b_n}) \sim k_n \,, \end{aligned}$$

Assuming also \mathbf{CS}_{α} , α -cluster inference is justified. In this case the tuning parameter k_n does not dependent on the underlying time dependencies.

Extremal index

Maximum domain of attraction

There exists (a_n) such that

$$(\mathbb{P}(|\mathbf{X}_1| \leqslant xa_n))^n \to G(x) := \mathbb{P}((\Gamma_1)^{-1/\alpha} \leqslant x), \quad n \to \infty,$$

where
$$G(x) = \exp\{-x^{-\alpha}\}$$
, for $\alpha > 0$, $x > 1$, $n\mathbb{P}(X_1 > a_n) \to 1$.

Extremal index

Maximum domain of attraction

There exists (a_n) such that

$$(\mathbb{P}(|\mathbf{X}_1|\leqslant xa_n))^n \to G(x) := \mathbb{P}((\Gamma_1)^{-1/\alpha}\leqslant x), \quad n\to\infty,$$
 where $G(x)=\exp\{-x^{-\alpha}\},$ for $\alpha>0,$ $x>1,$ $n\mathbb{P}(X_1>a_n)\to 1.$ (Leadbetter 1983) there exists $\theta\in(0,1]$ such that
$$\mathbb{P}(\|\mathbf{X}_{[1,n]}\|_{\infty}\leqslant x\,a_n) \to (G(x))^{\theta}, \quad n\to\infty.$$

$$\begin{split} \mathbb{P}(\|\mathbf{X}_{[1,n]}\|_{\infty} \leqslant x \, a_n) &\rightarrow (G(x))^{\boldsymbol{\theta}}, \quad n \rightarrow \infty. \\ \Longrightarrow (\mathbb{P}(X_1 \leqslant x \, a_{b_n}))^{\boldsymbol{\theta} \, b_n} &\sim \mathbb{P}(\|\mathcal{B}_{1,b_n}\|_{\infty} \leqslant x \, a_{b_n}) \sim G(x), \quad n \rightarrow \infty. \\ \text{for } x_{b_n} = x \, a_{b_n} \text{ with } \|\mathcal{B}_{1,b_n}/x_{b_n}\|_{\infty} \overset{\mathbb{P}}{\rightarrow} 0, \text{ as } \log(1-x)/x \rightarrow 0 \text{ as } x \rightarrow 0, \\ \frac{\mathbb{P}(\|\mathcal{B}_{1,b_n}\|_{\infty} > x_{b_n})}{b_n \mathbb{P}(|\mathbf{X}_1| > x_{b_n})} \rightarrow \boldsymbol{\theta}_{|\mathbf{X}|}, \quad n \rightarrow \infty. \end{split}$$

 \implies Blocks estimator based in (Hsing 1991):

$$\widehat{\theta}_{|\mathbf{X}|}^{\mathcal{B}} = \frac{1}{k_n b_n} \sum_{t=1}^{m_n} \mathbb{1}(\|\mathcal{B}_t\|_{\infty} > |\mathbf{X}|_{(k+1)}).$$

Example: extremal index

Cluster-based extremal index inference

For example, if $f_{\alpha}: (\mathbf{x}_t) \mapsto \|(\mathbf{x}_t)\|_{\infty}^{\alpha}/\|(\mathbf{x}_t)\|_{\alpha}^{\alpha}$, then,

$$\theta_{|\mathbf{X}|} = \mathbb{E}[\|\mathbf{Q}\|_{\infty}^{\alpha}].$$

 \implies Estimator of the extremal index based on extremal ℓ^{α} -blocks.

$$\widehat{\theta}_{|\mathbf{X}|} = \frac{1}{k} \sum_{t=1}^{m} \frac{\|\mathcal{B}_{t}\|_{\infty}^{\widehat{\alpha}}}{\|\mathcal{B}_{t}\|_{\widehat{\alpha}}^{\widehat{\alpha}}} \mathbb{1}(\|\mathcal{B}_{t}\|_{\widehat{\alpha}} > \|\mathcal{B}\|_{\widehat{\alpha},(k+1)}),$$

Causal linear model

Theorem Buriticá, Wintenberger (2024)³

Let $(\mathbf{X}_t) = \sum_{t \geqslant 0} \varphi_j \mathbf{Z}_{t-j}$, such that (\mathbf{Z}_t) is i.i.d. and satisfies \mathbf{RV}_{α} . For $\rho > 0$, assume $\varphi_t = O(t^{-\rho})$. Assume

- 1) f_p is bounded and $\rho > 3 + 2/\alpha$.
- 2) there exist $\kappa' > 0$, and (k_n) satisfying $k_n = O(n b_n^{-\kappa'-1})$,

Then, if a bias assumption holds and $k/k' \rightarrow 0$,

$$\sqrt{k}(\widehat{f_{\widehat{\alpha}}^{\mathbf{Q}}} - f_{\alpha}^{\mathbf{Q}}) \stackrel{d}{\rightarrow} \mathcal{N}(0, Var(f_{\alpha}(Y\mathbf{Q}))), \quad n \rightarrow \infty.$$

In particular, the $\alpha\text{-cluster}$ based estimators for the extremal index has null asymptotic variance!

Implementation extremal index

If
$$f_{\alpha}: (\mathbf{x}_t) \mapsto \|(\mathbf{x}_t)\|_{\infty}^{\alpha} / \|(\mathbf{x}_t)\|_{\alpha}^{\alpha}$$
, then for $p = \alpha$,

$$\theta_{|\mathbf{X}|} = \mathbb{E}[\|\mathbf{Q}\|_{\infty}^{\alpha}].$$

 \implies Estimator of the extremal index based on extremal ℓ^{α} -blocks.

$$\widehat{\theta}_{|\mathbf{X}|} = \frac{1}{k} \sum_{t=1}^{m} \frac{\|\mathcal{B}_{t}\|_{\infty}^{\widehat{\alpha}}}{\|\mathcal{B}_{t}\|_{\widehat{\alpha}}^{\widehat{\alpha}}} \mathbb{1}(\|\mathcal{B}_{t}\|_{\widehat{\alpha}} > \|\mathcal{B}\|_{\widehat{\alpha},(k+1)}),$$

For the autoregressive process AR(1): $Var(f_{\alpha}(\mathbf{Q})) = 0$.

Implementation extremal index

Blocks estimator based in (Hsing 1991):

$$\widehat{\theta}_{|\mathbf{X}|}^{\mathcal{B}} = \frac{1}{k_n b_n} \sum_{t=1}^{m_n} \mathbb{1}(\|\mathcal{B}_t\|_{\infty} > |\mathbf{X}|_{(k+1)}).$$

Direct computations from Example 10.4.2 in (Kulik and Soulier 2020) yield

$$\sqrt{k}(\widehat{\theta}_{|\mathbf{X}|}^{\mathcal{B}} - \theta_{|\mathbf{X}|}) \stackrel{d}{
ightarrow} \mathcal{N}(0, \sigma_{\theta}^2), \quad n
ightarrow \infty,$$

where $\sigma_{\theta}^2 \in [0, \infty)$, and

$$\sigma_{\theta}^2 = \theta_{|\mathbf{X}|}^2 \sum_{j \in \mathbb{Z}} \sum_{t \in \mathbb{Z}} \mathbb{E}[|\mathbf{Q}_{j+t}^{(\alpha)}|^{\alpha} \wedge |\mathbf{Q}_{t}^{(\alpha)}|^{\alpha}] - \theta_{|\mathbf{X}|}.$$

For the autoregressive process AR(1): $\sigma_{\theta}^2 = 1 - \theta_{|\mathbf{X}|} > 0$.

Case study

Figure: Location of weather stations in France.

Take away

- ▶ How to choose extreme blocks plays an important role in inference.
- ▶ Estimation of the tail-index can help to stabilize the method.
- $\ell^{\hat{\alpha}}$ -blocks inference yields robust result.

Questions?

Thank you for your attention!

Further perspectives

- ▶ How to define extremal directions of extremes in space and time?
- ▶ Different extremes episodes can have different causes, identify extreme with comparable features could help environmental scientists detect and characterize the natural phenomena leading to an extreme event.

References I

G. Buriticá, N. Meyer, T. Mikosch, and O. Wintenberger.

Some variations on the extremal index.

Zap. Nauchn. Semin. POMI., 30:52-77, 2021.

To be translated in J.Math.Sci. (Springer).

G. Buriticá and O. Wintenberger.

On the asymptotics of extremal lp-blocks cluster inference. arXiv:2212.13521, 2024.

R. A. Davis and T. Hsing.

Point process and partial sum convergence of weakly dependent random variables with infinite variance.

The Annals of Probability, 23:879–917, 1995.

H. Drees and H. Rootzén.

Limit theorems for empirical processes of cluster functionals.

Ann. Stat., 38:2145-2186, 2010.

A. Janssen and J. Segers.

Markov tail chains.

Journal of Applied Probability, 51:1133–1153, 2014.

Simulation setup

$$\widehat{\theta}_{|\mathbf{X}|,\alpha} = k_n^{-1} \sum_{t=1}^{m_n} \frac{\|\mathcal{B}_t\|_{\infty}^{\alpha}}{\|\mathcal{B}_t\|_{\alpha}^{\alpha}} \mathbb{1}(\|\mathcal{B}_t\|_{\alpha} > \|\mathcal{B}\|_{\alpha,(k)}), \tag{1}$$

$$\widehat{\theta}_{|\mathbf{X}|}^{\mathcal{B}} = \frac{1}{k_n b_n} \sum_{t=1}^{m_n} \mathbb{1}(\|\mathcal{B}_t\|_{\infty} > |\mathbf{X}|_{(k+1)}).$$
 (2)

- ▶ We simulate 1 000 AR(1) trajectories $(X_t)_{t=1,...,n}$, $X_t = \varphi X_{t-1} + Z_t$, for n = 8000, 3000, 1000.
- We fix $k = k_n = n/b_n^2$ and we use that $k_n(p) = o(n/b^{1+\kappa'})$,
- ▶ In this setting,

$$0 = Var(f_{\alpha}(YQ^{(\alpha)})) < \sigma_{\theta}^2 = 1 - \theta_{|\mathbf{X}|}.$$

Extremal index comparison

Figure: Boxplots based on 1000 simulations of $(X_t)_{t=1,...,n}$ with $n=5\,000$ for the estimation of $\theta_{|X|}=0.8$ in the AR(1) model with $\varphi=0.2$ and iid student(1) noise.