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Beware of the Simulated DAG!
Causal Discovery Benchmarks May Be Easy To Game
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Abstract

Simulated DAG models may exhibit properties that, perhaps inadvertently, render
their structure identifiable and unexpectedly affect structure learning algorithms.
Here, we show that marginal variance tends to increase along the causal order
for generically sampled additive noise models. We introduce varsortability as a
measure of the agreement between the order of increasing marginal variance and
the causal order. For commonly sampled graphs and model parameters, we show
that the remarkable performance of some continuous structure learning algorithms
can be explained by high varsortability and matched by a simple baseline method.
Yet, this performance may not transfer to real-world data where varsortability may
be moderate or dependent on the choice of measurement scales. On standardized
data, the same algorithms fail to identify the ground-truth DAG or its Markov
equivalence class. While standardization removes the pattern in marginal variance,
we show that data generating processes that incur high varsortability also leave a
distinct covariance pattern that may be exploited even after standardization. Our
findings challenge the significance of generic benchmarks with independently
drawn parameters. The code is available at https://github.com/Scriddie/
Varsortability.

1 Introduction

Causal structure learning aims to infer a causal model from data. Academic disciplines anywhere
from biology, medicine, finance, to machine learning are interested in causal models [Rothman et al.,
2008, Imbens and Rubin, 2015, Sanford and Moosa, 2012, Schölkopf, 2019]. Causal models not only
describe the observational joint distribution of variables but also formalize predictions under inter-
ventions and counterfactuals [Spirtes et al., 2000, Pearl, 2009, Peters et al., 2017]. Directed acyclic
graphs (DAGs) are common to represent causal structure: nodes represent variables and directed
edges point from cause to effect representing the causal relationships. This graphical representation
rests on assumptions which have been critically questioned, for example by Dawid [2010]. Inferring
causal structure from observational data is difficult: Often we can only identify the DAG up to its
Markov equivalence class (MEC) and finding high-scoring DAGs is NP-hard [Chickering, 1996,
Chickering et al., 2004]. Here, we focus on learning the DAG of linear additive noise models (ANM).

Data scale and marginal variance may carry information about the data generating process. This
information can dominate benchmarking results, such as, for example, the outcome of the NeurIPS
Causality 4 Climate competition [Runge et al., 2020]. Here, the magnitude of regression coefficients
was informative about the existence of causal links such that ordinary regression-based methods on
raw data outperformed causal discovery algorithms [Weichwald et al., 2020]. Multiple prior works

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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Abstract

Additive Noise Models (ANMs) are a common model class for causal discovery
from observational data. Due to a lack of real-world data for which an underlying
ANM is known, ANMs with randomly sampled parameters are commonly used
to simulate data for the evaluation of causal discovery algorithms. While some
parameters may be fixed by explicit assumptions, fully specifying an ANM requires
choosing all parameters. Reisach et al. (2021) show that, for many ANM parameter
choices, sorting the variables by increasing variance yields an ordering close to
a causal order and introduce ‘var-sortability’ to quantify this alignment. Since
increasing variances may be unrealistic and cannot be exploited when data scales
are arbitrary, ANM data are often rescaled to unit variance in causal discovery
benchmarking.

We show that synthetic ANM data are characterized by another pattern that is
scale-invariant and thus persists even after standardization: the explainable fraction
of a variable’s variance, as captured by the coefficient of determination R2, tends
to increase along the causal order. The result is high ‘R2-sortability’, meaning
that sorting the variables by increasing R2 yields an ordering close to a causal
order. We propose a computationally efficient baseline algorithm termed ‘R2-
SortnRegress’ that exploits high R2-sortability and that can match and exceed the
performance of established causal discovery algorithms. We show analytically that
sufficiently high edge weights lead to a relative decrease of the noise contributions
along causal chains, resulting in increasingly deterministic relationships and high
R2. We characterize R2-sortability on synthetic data with different simulation
parameters and find high values in common settings. Our findings reveal high
R2-sortability as an assumption about the data generating process relevant to causal
discovery and implicit in many ANM sampling schemes. It should be made explicit,
as its prevalence in real-world data is an open question. For causal discovery
benchmarking, we provide implementations of R2-sortability, the R2-SortnRegress
algorithm, and ANM simulation procedures in our library CausalDisco.

∗Correspondence to alexander.reisach@math.cnrs.fr

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Causality

Take two continuous random variables X and Y with joint
distribution P(X ,Y ). The joint can be factorized into

P(Y |X )P(X ) or P(X |Y )(Y ). (1)

We may want to predict one of the variables given the other.
Depending on which is our target, we may be interested in the
conditional expectation

E [Y | X ] or E [X | Y ] . (2)

For prediction, either option can be useful. However, this may not
be the case when we are interested in the effect of changing the
variables.
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Correlation vs. Causation
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Structural Equation Models

The data generating process may be given by the structural
equations

C := NC (GDP)
A := f (C ) + NA (chocolate)
B := f (C ) + NB (nobel laureates),

where NA,NB ,NC are mutually independent noise random variables.

Changing the value of a variable (replacing its structural equation
with a constant) is called an intervention. In this case, changing A
has no effect on B , because A is not a cause of B .
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Structural Equations as Graphs

We can draw the relationships between variables in a graph - note
that C separates2 A and B .

A B

C

We write the independence between A and B given C as

A ⊥ B|C .

2Removing C and all adjacent edges removes all paths between X and Y .
9 / 36



Graphical Models

Graphical models are independence models (adhering to the 5
graphoid axioms3). Let G = (V ,E ) be a graph with nodes V and
edges4 E .

Let A,B,C ,D be disjoint subsets of V .

(S1) A ⊥ B|C =⇒ B ⊥ A|C (symmetry)
(S2) A ⊥ B ∪ D|C =⇒ A ⊥ B|C and A ⊥ D|C (decomposition)

...

These are very general axioms, which allow us to use graphical
models to represent a variety of independence relationships.

3Lauritzen 1996, Section 2.5.1.
4undirected, no self-loops, and no multiple edges.
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Probabilistic Graphical Models

Let G = (V ,E ) be our graph. Let X be a set of random variables5

{Xv}v∈V with joint distribution P(X ).

P(X ) is Markov w.r.t. G if for all X1,X2,X3 ⊂ X disjoint,

X1 ⊥ X3 | X2 =⇒ X1 ⊥⊥ X3 | X2. (3)

Note: the other direction of eq. (3) does not hold in general.6

5think of the vertices V = {V1, . . . ,Vd} corresponding to {X1, . . . ,Xd}

6It would be very convenient, so it is often assumed that it does.
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Causal Graphical Models

Causal graphical models use directed acyclic graphs (DAGs) to
reason about interventions7.

. X2 X3

X1

If P(X ) is Markov w.r.t. G, we have that

P(X ) =
d∏

i=1

P(Xi |PaG(Xi)).

7recall our example about GDP, chocolate consumption, and nobel prizes.
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Structural Causal Models (SCMs)

Structural causal models combine a causal graphical model with a
set of structural equations, and a corresponding.
Given X = {X1,X2,X3} and independent noise variables
N1,N2,N3, consider for example the following model:

X2 X3

X1

(a) Corresponding DAG G

X1 := f1(N1)

X2 := f2(X1,N2)

X3 := f3(X1,N3)

(b) Structural equations

In SCMs, we can compute the effect of interventions using the
structural equations, and we can compute graphical properties
using the DAG.

13 / 36



Structural Causal Models (SCMs)

Structural causal models combine a causal graphical model with a
set of structural equations, and a corresponding.
Given X = {X1,X2,X3} and independent noise variables
N1,N2,N3, consider for example the following model:

X2 X3

X1

(a) Corresponding DAG G

X1 := f1(N1)

X2 := f2(X1,N2)

X3 := f3(X1,N3)

(b) Structural equations

In SCMs, we can compute the effect of interventions using the
structural equations, and we can compute graphical properties
using the DAG.

13 / 36



Section Overview

Structural Causal Models (SCMs)
Causality
Graphical Models
Structural Causal Models (SCMs)

Causal Discovery
Learning Causal Structures
Additive Noise Models (ANMs)

The Problem With Causal Discovery

Sortability
Var-Sortability
R2-Sortability

14 / 36



Causal Discovery

The goal of causal discovery is to learn a structural causal model
from data. This requires either
▶ interventional data (e.g. randomized control trials) and strong

assumptions, or
▶ observational data and extremely strong assumptions.

15 / 36



Causal Discovery on Observational data

Two main approaches:
▶ Constraint-based methods: perform (conditional)

independence testing to narrow down the graph structure.
(Yields partially directed graphs.)

▶ Score-based methods: optimize a score criterion (e.g. the
likelihood) to find the best an estimated graph.
(Yields DAGs!)

16 / 36



Additive Noise Models (ANMs)

Additive noise models encode a popular functional assumption that
allows learning causal structure from observational data using
score-based methods.8

We consider linear ANMs of the form

X = W⊤X + N, where

▶ X = (X1, . . . ,Xd)
⊤ are random variables

▶ W ∈ Rd×d is a weighted adjacency matrix
▶ N = (N1, . . . ,Nd)

⊤ is a vector of independent noise variables.

The goal is to learn W (the causal DAG and weights) from
observations of X .

8Peters et al. 2011.
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A Glimpse at the Causal Discovery Ecosystem
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Lack of Ground Truth

Are these causal graphs
in the room with us right now?

20 / 36



How (Not?) to Evaluate Causal Discovery Algorithms

If we have no data, let us simulate some! In the case of ANMs:

1. Choose the number of variables d .
2. Determine a connectivity parameter γ.
3. Draw random graphs from a distribution PG .
4. Draw edge weights from a distribution PW .
5. Draw noise standard deviations from Pσ.
6. Draw noise from a distribution PN(σ).

But what parameters should we choose?
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Parameter Choices in Causal Chains

Consider a causal chain of the form

X1 := N1

X2 := W1,2X1 + N2

. . .

Xp := Wp−1,pXp−1 + Np,

corresponding to the chain DAG

W1,2 Wp−1,p

N1 N2 N3

X1 X2 Xp−1 Xp

23 / 36



What Happens Along the Chain?

Consider a causal chain (X0
w0,1−−→ X1

w1,2−−→ X2
w2,3−−→ · · · wp−1,p−−−−→ Xp)

of length p > 0 with fixed edge weights wj ,j+1 for j = 0, ..., p − 1
and fixed standard deviations σj for j = 0, ..., p of the independent
noise variables N0, ...,Np.

Var(Xp) = Var(wp−1,p Xp−1) + Var(Np)

= · · · (unfolding the recursion) · · ·

=

p−1∑
i=0

σ2
i

p−1∏
j=i

wj ,j+1

2

+ σ2
p

≥ σ2
0

p−1∏
j=0

w2
j ,j+1

≥ σ2
0

p−1∑
j=0

log |wj ,j+1|.
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A Sufficient Criterion for Diverging Variances in Chains

Let now wj ,j+1 be drawn from the distribution of edge weights PW

and let σ0 have bounded positive support.

We have by the strong law of large numbers that

σ2
0

p−1∑
j=0

log |wj ,j+1| a.s.−−−→
p→∞

+∞

given

0 < E [log |V |] < +∞, with V ∼ PW , (4)

since the wj ,j+1 are sampled iid from PW .

25 / 36



Illustration

Given sufficiently large weights in W , the variance tends to increase
along causal chains.

0 3 6 9 12 15 18

Position in causal chain

0

2

4

6

8

lo
g(

V
ar

ia
nc

e)

log(Variance)

Figure: Causal chains with weights drawn from Unif(0.5, 2) and Gaussian
noise with standard deviations drawn from Unif(0.5, 2); 30 chains
simulated independently.

(For a V ∼ Unif(0.5, 2), we have E [log |V |] ≈ 0.16.)
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Exploiting The Variance Pattern For Causal Discovery
Var-SortnRegress – a simple causal discovery algorithm

1. Sort variables by increasing variance.
2. Perform sparse regression of each node onto on all its

predecessors.

→ performs extremely well.9 In fact, it performs too well. Consider:
▶ causal discovery is a hard problem across many sciences.
▶ the variance depends on arbitrary measurement units.

it’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fineit’s fine

we can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardizewe can standardize

9Reisach, Seiler, and Weichwald 2021
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Var-SortnRegress – a simple causal discovery algorithm

1. Sort variables by increasing variance.
2. Perform sparse regression of each node onto on all its

predecessors.
→ performs extremely well.9 In fact, it performs too well. Consider:
▶ causal discovery is a hard problem across many sciences.
▶ the variance depends on arbitrary measurement units.
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But is Standardization Enough?

As before, we note that in a chain we have that

Var(Xj) = Var(wj−1,j Xj−1) + σ2
j .

The fraction of the variance due to the cause, which we call the
fraction of cause-explained variance (CEV), is given as

Var(wj−1,j Xj−1)

Var(wj−1,j Xj−1) + σ2
j

. (5)

Idea: for diverging variances and iid noise variances with bounded
support, eq. (5) must converge to 1.
Problem: we cannot estimate eq. (5) without knowing the causal
structure.
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R2 as a Scale-Invariant Sorting Criterion

We can use the fraction of explainable variance given all other
variables (not just the cause) as an upper bound.10

It is captured by the coefficient of determination

R2(Xj) = 1 −
Var(Xj − E(Xj | X{1...d}\{j}))

Var(Xj)
.

In causal chains, if the condition for the divergence of the variances
to infinity is fulfilled, R2 converges to 1 since

R2(Xj) ≥ 1 − Var(Xj − E [Xj | Xj−1])

Var(Xj)

= 1 −
σ2
j

Var(Xj)
a.s.−−−→
j→∞

1.

10Reisach, Tami, et al. 2023.
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Illustration
Given sufficiently large weights in W , the total variance,
cause-explained variance, and R2 tend to increase along causal
chains.
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We can use R2 as a sorting criterion to obtain a candidate causal
order! But how well does an ordering by R2 approximate a causal
ordering?
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Sortability

τ -sortability: The fraction of all cause-effect pairs for which the
τ -criterion is higher for the effect than for the cause.

Example R2-sortability: τ(X , i) = R2(Xi )

X1

X2

X3

R2(X1) = 0.7

R2(X2) = 0.6

R2(X3) = 0.8

v = 1v = 1
1+1v = 1+1
1+1+1

v = 1+1+1
1+1+1+1 = 3

4
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R2-Sortability in Random DAGs

R2-sortability measures the agreement between the R2 ordering and
a causal order. A value of 0.5 amounts to a random ordering; a
value of 1 amounts to a perfect causal ordering.
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Figure: Relationship of size and R2-sortability in random graphs with an
average in-degree of 2.
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Exploiting R2-Sortability

R2SortnRegress – a simple causal discovery algorithm
1. For each variable, compute the R2 given all others.
2. Sort variables by increasing R2.
3. Perform sparse regression of each node onto on all its

predecessors.
R2-SortnRegress is simple, fast, and scale-invariant.
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Causal Discovery Performance of R2-SortnRegress
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Figure: Causal Discovery results on 500 Erdős–Rényi DAGs with 20 nodes
and an avg. in-degree of 2, Gaussian noise with standard deviations
drawn iid from Unif(0.5, 2), weights drawn iid from Unif(±(0.5, 1)).

34 / 36



Take-Away
▶ Parameter choices can leave distinct patterns in causal models

(and they do on many simulated benchmarks).
▶ Sortability is a measure to evaluate the presence of such

patterns for a given criterion.
▶ What (if any) SCM parameterizations are realistic?
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Thank you for your attention!
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