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Causality

Take two continuous random variables X and Y with joint
distribution P(X, Y). The joint can be factorized into

P(Y|X)P(X) or P(X|Y)(Y). (1)
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Causality

Take two continuous random variables X and Y with joint
distribution P(X, Y). The joint can be factorized into

P(Y|X)P(X) or P(X|Y)(Y). (1)

We may want to predict one of the variables given the other.
Depending on which is our target, we may be interested in the
conditional expectation

E[Y | X] or E[X]Y]. (2)
For prediction, either option can be useful. However, this may not

be the case when we are interested in the effect of changing the
variables.
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Correlation vs. Causation

Nobel Laureates / 10M people
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Correlation vs. Causation
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Structural Equation Models

The data generating process may be given by the structural

equations
C = Nc (GDP)
A=Ff(C)+ Na (chocolate)
B :=f(C)+ Ng (nobel laureates),

where Ny, Ng, N¢ are mutually independent noise random variables.

Changing the value of a variable (replacing its structural equation
with a constant) is called an intervention. In this case, changing A
has no effect on B, because A is not a cause of B.
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Structural Equations as Graphs

We can draw the relationships between variables in a graph - note
that C separates® A and B.

C
A B
We write the independence between A and B given C as

AL B|C.

2Removing C and all adjacent edges removes all paths between X and Y.
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Graphical Models

Graphical models are independence models (adhering to the 5
graphoid axioms3). Let G = (V, E) be a graph with nodes V' and
edges* E.

3Lauritzen 1996, Section 2.5.1.

“undirected, no self-loops, and no multiple edges.
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Graphical Models

Graphical models are independence models (adhering to the 5
graphoid axioms3). Let G = (V, E) be a graph with nodes V and
edges* E.

Let A, B, C, D be disjoint subsets of V.

(51) ALB|C = B LAC (symmetry)
(52) ALBUD|C = ALB|Cand AL D|C  (decomposition)

These are very general axioms, which allow us to use graphical
models to represent a variety of independence relationships.

3Lauritzen 1996, Section 2.5.1.

“undirected, no self-loops, and no multiple edges.
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Probabilistic Graphical Models

Let G = (V, E) be our graph. Let X be a set of random variables®
{X, }vev with joint distribution P(X).

®think of the vertices V = {V4,..., V4} corresponding to {Xi,..., X4}
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Probabilistic Graphical Models

Let G = (V, E) be our graph. Let X be a set of random variables®
{X, }vev with joint distribution P(X).

P(X) is Markov w.r.t. G if for all X1, Xa, X3 C X disjoint,
XlJ_X3‘X2:>X1J_|_X3|X2. (3)

Note: the other direction of eq. (3) does not hold in general.®

®think of the vertices V = {V4,..., V4} corresponding to {Xi,..., X4}
%It would be very convenient, so it is often assumed that it does.
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Causal Graphical Models

Causal graphical models use directed acyclic graphs (DAGs) to

reason about interventions’.

X1

N

Xo X3

"recall our example about GDP, chocolate consumption, and nobel prizes.
12/36



Causal Graphical Models

Causal graphical models use directed acyclic graphs (DAGs) to

reason about interventions’.

X1

N

Xo X3

If P(X) is Markov w.r.t. G, we have that

d

P(X) = [ [ P(XiIPag(Xi)).
=1

"recall our example about GDP, chocolate consumption, and nobel prizes.
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Structural Causal Models (SCMs)

Structural causal models combine a causal graphical model with a
set of structural equations, and a corresponding.

Given X = {X1, X2, X3} and independent noise variables

Ny, N>, N3, consider for example the following model:

Xl X1 = ﬂ(Nl)
N\ Xo = h(X1, Na)
Xo X3 X3 = (X1, N3)
(a) Corresponding DAG G (b) Structural equations
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Structural Causal Models (SCMs)

Structural causal models combine a causal graphical model with a
set of structural equations, and a corresponding.

Given X = {X1, X2, X3} and independent noise variables

Ny, N>, N3, consider for example the following model:

Xl X1 = ﬂ(Nl)
/ \ X2 = fz(Xl, N2)
Xo X3 X3 = (X1, N3)
(a) Corresponding DAG G (b) Structural equations

In SCMs, we can compute the effect of interventions using the

structural equations, and we can compute graphical properties
using the DAG.
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Section Overview

Causal Discovery
Learning Causal Structures
Additive Noise Models (ANMs)
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Causal Discovery

The goal of causal discovery is to learn a structural causal model
from data. This requires either

> interventional data (e.g. randomized control trials) and strong
assumptions, or

» observational data and extremely strong assumptions.
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Causal Discovery on Observational data

Two main approaches:

» Constraint-based methods: perform (conditional)
independence testing to narrow down the graph structure.

(Yields partially directed graphs.)

» Score-based methods: optimize a score criterion (e.g. the
likelihood) to find the best an estimated graph.
(Yields DAGs!)

16/36



Additive Noise Models (ANM:s)

Additive noise models encode a popular functional assumption that
allows learning causal structure from observational data using
score-based methods.®

8Peters et al. 2011.
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Additive noise models encode a popular functional assumption that
allows learning causal structure from observational data using
score-based methods.®

We consider linear ANMs of the form
X =WTX+ N, where

> X =(Xi,...,Xy)" are random variables
> W e RY% is a weighted adjacency matrix

» N = (Ni,...,Ny)T is a vector of independent noise variables.

8Peters et al. 2011.
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Additive Noise Models (ANM:s)

Additive noise models encode a popular functional assumption that
allows learning causal structure from observational data using
score-based methods.®

We consider linear ANMs of the form
X =WTX+ N, where

> X =(Xi,...,Xy)" are random variables
> W e RY% is a weighted adjacency matrix

» N = (Ni,...,Ny)T is a vector of independent noise variables.

The goal is to learn W (the causal DAG and weights) from
observations of X.

8Peters et al. 2011.
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Section Overview

The Problem With Causal Discovery
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A Glimpse at the Causal Discovery Ecosystem

Star History
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Lack of Ground Truth

Are these c%:sal
in the room wi

20/36



How (Not?) to Evaluate Causal Discovery Algorithms

If we have no data, let us simulate some! In the case of ANMs:

A o

Choose the number of variables d.
Determine a connectivity parameter ~.

Draw random graphs from a distribution Pg.
Draw edge weights from a distribution Pyy .
Draw noise standard deviations from P,.

Draw noise from a distribution Py(c).

21/36



How (Not?) to Evaluate Causal Discovery Algorithms

If we have no data, let us simulate some! In the case of ANMs:

Choose the number of variables d.
Determine a connectivity parameter ~.

Draw random graphs from a distribution Pg.
Draw edge weights from a distribution Pyy .

Draw noise standard deviations from P,.

A o

Draw noise from a distribution Py(c).

But what parameters should we choose?
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Sortability
Var-Sortability
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Parameter Choices in Causal Chains

Consider a causal chain of the form

X1 = N1
Xo = Wi X1+ Np

Xp = Wp_1,pXp—1 + Np,
corresponding to the chain DAG

Ny A Ns
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What Happens Along the Chain?

wo,1 w12

Consider a causal chain (Xp X1 Xo P23, Mete Xp)
of length p > 0 with fixed edge weights w; ;1 for j=0,....,p—1
and fixed standard deviations o} for j = 0, ..., p of the independent
noise variables N, ..., N.

24 /36



What Happens Along the Chain?

wo,1 w12

Consider a causal chain (Xp X1 Xo P23, Mete Xp)
of length p > 0 with fixed edge weights w; ;1 for j=0,....,p—1
and fixed standard deviations o} for j = 0, ..., p of the independent
noise variables N, ..., N.

Var(X,) = Var(wp_1,p Xp—1) + Var(Np)

24 /36



What Happens Along the Chain?

wo,1 w12

Consider a causal chain (Xp X1 Xo P23, Mete Xp)
of length p > 0 with fixed edge weights w; ;1 for j=0,....,p—1
and fixed standard deviations o} for j = 0, ..., p of the independent
noise variables N, ..., N.

Var(X,) = Var(wp_1,p Xp—1) + Var(Np)

= - - (unfolding the recursion) - -

24 /36



What Happens Along the Chain?

wo,1 w12

Consider a causal chain (Xp X1 Xo P23, Mete Xp)
of length p > 0 with fixed edge weights w; ;1 for j=0,....,p—1
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2
=29 H Wij+1 | +0p
i=0 Jj=i
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What Happens Along the Chain?

wo,1

Consider a causal chain (Xp X1 "2 Xo P23, Mete Xp)
of length p > 0 with fixed edge weights w; ;1 for j=0,....,p—1

and fixed standard deviations o} for j = 0, ..., p of the independent
noise variables N, ..., N.
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What Happens Along the Chain?

wo,1 w12

Consider a causal chain (Xp X1 Xo P23, Mete Xp)
of length p > 0 with fixed edge weights w; ;1 for j=0,....,p—1

and fixed standard deviations o} for j = 0, ..., p of the independent
noise variables N, ..., N.

Var(X,) = Var(wp_1,p Xp—1) + Var(Np)

= - - (unfolding the recursion) - -

p—1 p—1 2
_ 2
=29 H Wij+1 | +0p
i=0 Jj=i
p—1
> o2 H w
0 Ju+1
Jj=0
p—1
> 05 log|wj i1
= 0p g W) j+1
j=0
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A Sufficient Criterion for Diverging Variances in Chains

Let now w; ;1 be drawn from the distribution of edge weights Py,
and let op have bounded positive support.

We have by the strong law of large numbers that

p—1
2 a.s.
%, log |w; 1] oee 00
j=0
given
0 < E[log |V|] < 400, with V ~ Py, (4)

since the w; j11 are sampled iid from Pyy.
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[[lustration

Given sufficiently large weights in W, the variance tends to increase
along causal chains.

8 log(Variance)
o
g 6
c
.@
G 4
=
a0
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0

0 3 6 9 12 15 18

Position in causal chain

Figure: Causal chains with weights drawn from Unif(0.5,2) and Gaussian
noise with standard deviations drawn from Unif(0.5,2); 30 chains
simulated independently.

(For a V ~ Unif(0.5,2), we have E[log |V|] = 0.16.)
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Exploiting The Variance Pattern For Causal Discovery
Var-SortnRegress — a simple causal discovery algorithm
1. Sort variables by increasing variance.
2. Perform sparse regression of each node onto on all its
predecessors.
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Var-SortnRegress — a simple causal discovery algorithm
1. Sort variables by increasing variance.
2. Perform sparse regression of each node onto on all its
predecessors.

— performs extremely well. In fact, it performs too well. Consider:

» causal discovery is a hard problem across many sciences.
> the variance depends on arbitrary measurement units.

9Reisach, Seiler, and Weichwald 2021
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1. Sort variables by increasing variance.
2. Perform sparse regression of each node onto on all its
predecessors.

— performs extremely well. In fact, it performs too well. Consider:

» causal discovery is a hard problem across many sciences.
> the variance depends on arbitrary measurement units.
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But is Standardization Enough?

As before, we note that in a chain we have that

Var(X;) = Var(wj_1; Xj_1) + 0} .
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As before, we note that in a chain we have that
Var(X;) = Var(wj_1; Xj_1) + 0} .

The fraction of the variance due to the cause, which we call the
fraction of cause-explained variance (CEV), is given as

Var(wj1; Xj-1)
Var(wj1j Xj-1) + 07

(5)
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But is Standardization Enough?

As before, we note that in a chain we have that
Var(X;) = Var(wj_1; Xj_1) + 0} .

The fraction of the variance due to the cause, which we call the
fraction of cause-explained variance (CEV), is given as

Var(wj1; Xj-1)
Var(wj1j Xj-1) + 07

(5)

Idea: for diverging variances and iid noise variances with bounded
support, eq. (5) must converge to 1.

Problem: we cannot estimate eq. (5) without knowing the causal
structure.
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R? as a Scale-Invariant Sorting Criterion

We can use the fraction of explainable variance given all other
variables (not just the cause) as an upper bound.'®

It is captured by the coefficient of determination

Var(X; — E(X; | X 1))
20y 1 J J | AMLdW\{j}
R =1 Var(X) |

10Reisach, Tami, et al. 2023.
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R? as a Scale-Invariant Sorting Criterion

We can use the fraction of explainable variance given all other
variables (not just the cause) as an upper bound.'®

It is captured by the coefficient of determination

- Var(X; — E(X; | X.ap i)
Var(X;) .

RX) = 1
In causal chains, if the condition for the divergence of the variances
to infinity is fulfilled, R? converges to 1 since

B Var(X; — E[X; | Xj-1])
Var(X;)

RA(X)) > 1

2
J

—1_ a.s. 1
Var(XJ-) j—o0

10Reisach, Tami, et al. 2023
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[[lustration

Given sufficiently large weights in W, the total variance,
cause-explained variance, and R? tend to increase along causal

chains.

log(Variance)
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log(Variance)
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R2, CEV-fraction
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[[lustration

Given sufficiently large weights in W, the total variance,
cause-explained variance, and R? tend to increase along causal

chains.
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log(Variance)
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Position in causal chain

We can use R? as a sorting criterion to obtain a candidate causal
order! But how well does an ordering by R? approximate a causal

ordering?
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Sortability

T-sortability: The fraction of all cause-effect pairs for which the
7-criterion is higher for the effect than for the cause.
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Sortability

T-sortability: The fraction of all cause-effect pairs for which the

7-criterion is higher for the effect than for the cause.

Example R?-sortability: 7(X, i) = R%(X;)

R2(X3) = 0.6

NS 5 S
\ = THi4
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R?-Sortability in Random DAGs

R?-sortability measures the agreement between the R? ordering and
a causal order. A value of 0.5 amounts to a random ordering; a
value of 1 amounts to a perfect causal ordering.
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R?-Sortability in Random DAGs

R?-sortability measures the agreement between the R? ordering and
a causal order. A value of 0.5 amounts to a random ordering; a
value of 1 amounts to a perfect causal ordering.

L0 1.0 Weights
e — —— 1(0.1,32.53); E[ln [V]]=25

0.9 0.9
ol z —— +(0.1,19.55); E[ln|V|]=2.0
308 508 +(0.1,11.69); Eln|V[]=15
(] [0 . 7=
£, £, +(0.1,6.95); L[lu\b']fl.()
g e £(0.1,4.08); Efln |V[}=0.
e 0.6 206 +(0.1,2.36); E[ln [V[]=0.0
= =0 £(0.1,1.34); Efln |[V/[]=

0.5 0.5 £(0.1,0.73); E[ln|V[]=-1.0

10 20 30 10 20 30
Nodes Nodes
(a) Erdés—Rényi graphs (b) Scale-free graphs

Figure: Relationship of size and R?-sortability in random graphs with an
average in-degree of 2.
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Exploiting R?-Sortability

R?SortnRegress — a simple causal discovery algorithm
1. For each variable, compute the R? given all others.
2. Sort variables by increasing R?.

3. Perform sparse regression of each node onto on all its
predecessors.

R?-SortnRegress is simple, fast, and scale-invariant.
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Causal Discovery Performance of R2-SortnRegress

R?-SortnRegress
PC

FGES
RandomRegress <

Var-SortnRegress
(on raw data)

200+

100+

Structural Intervention Distance
&

i
-
-
-
-
-

0.3 0.4 05 0.6 0.7 0.8 0.9
R%sortability

Figure: Causal Discovery results on 500 Erdés—Rényi DAGs with 20 nodes
and an avg. in-degree of 2, Gaussian noise with standard deviations
drawn iid from Unif(0.5, 2), weights drawn iid from Unif(£(0.5,1)).

34/36



Take-Away

» Parameter choices can leave distinct patterns in causal models
(and they do on many simulated benchmarks).

» Sortability is a measure to evaluate the presence of such
patterns for a given criterion.

» What (if any) SCM parameterizations are realistic?
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» Parameter choices can leave distinct patterns in causal models
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patterns for a given criterion.

» What (if any) SCM parameterizations are realistic?

THEWORLD/IF. CRUSAL IIISG[WEIIY

35/36



Thank you for your attention!
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